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PREFACE

The papers published in these Proceedings represent the final version of some
lectures and communications presented at the International Conference on Differen-
tial Geometry and Its Applications. This Conference was organized by the Faculty
of Science, J. E. Purkyné University, Brno, Czechoslovakia, from August 26 to
September 2, 1989, and it became a part of the celebrations of the 70th anniversary
of Brno University. The Organizing Committee consisted of Anton Dekrét. Josef
Janyska, Ivan Kolai, Oldiich Kowalski, Demeter Krupka (chairman), Zbynék
Nadenik, and Alois Svec.

The scientific program covered most of the bLasic areas of differential geormetry
and its applications to physical sciences. We wish to thank the lecturers, as well as
all the other participants for their substantial contributions to the high scientific
level of the conference.

Our thanks should be expressed to the Dean of the Faculty of Science, J. E.
Purkyné University, Professor Jan Knoz for his support, and to the Faculty of
Electrical Engineering of the Technical University in Brno and the Faculty of Civil
Engineering of the Czech Technical University in Prague for their financial help.
Our thanks should also be expressed to World Scientific Publishing Co. for a very
good collaboration. :

Fipally, we would like to thank all the members of the Faculty of Science,
J. E. Purkyné University, especially to Jan Chrastina, Bofivoj Hertzlik, Ivana
Horova, Ivana Konec¢na, Michal Marvan, Véra Mikol4sové, Jaroslav Stefanek, Olga
Vlaginov4, and our students, for their effort in organizing and preparing this
Proceedings for publication.

Having written the Preface and having finished the preparation of this Proceedings
for print we were informed that on December 10, 1989 Professcr A. Svec — a
member of the Organizing Committee of our Conference — died. His sudden death
surprised us as well as many of the geometers who knew him because we did not
manage to tell him how we believed him as a mathematican and as a man.

Brno, December 15, 1989 The Editors
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The days have come, the days have gone...
Ourn sessions are in the past Light cone,
But we feel warmth of all these days,

And my heant's puls s0 to you says:

Let be all hearnts both brave and kind,
Let prospen science and mankind!

Let blossom thee, the mighty tree

04 Differential Geometrny!

N. Mitskievich

Then God Said
Let there be gauge theofiies
And there was Light
clearn and bright
Followed by Particles
gundamental or otherwdise
They jostled along merily
neacting strongly and sometimes weakly
They followed paths
as something as could be
And they called At
the minacle of gravity.

K. Manathe

Septembern 1, 1989, Brno
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DIFFERENTIAL GEOMETRY AND |TS APPLICATIONS
Proc.Conf. ,Aug.27-Sept.2,1989, Brno, Czechoslovakia
World Scientific, Singapore, 1990,. 3-8.

HOLOMORPHIC VECTOR BUNDLES WITH
k-PINCHED RICCI CURVATURE

NovicAa BLaZi¢

Abstract. We study holomorphic vector bundles (E, h) of rank 2 over
a compact Hermitian surface (M, g). Then the notion of a metric with
a k-pinched Ricci curvature is introduced and it represents the general-
ization of the Einstein condition. Some necessary topological conditions
for existence of a metric h with k-pinched(0 < k < 1) Ricci curvature

are obtained.
Keywords. Holomorphic vector bundle, Chern numbers
1985 Mathematics subject classifications 53C55, 53B35

1. INTRODUCTION

This is an exposition, in summary, of a work whi¢h will appear in
detail elsewhere(see [3]).

Let (E, h) be a complex vector bundle over a compact Riemmannian
manifold (M, g). Suppose that E admits complex connection D such
that its curvature tensor R satisfies the Einstein conditions. Then the
following question about the global structure of E can be asked: what
can be said about the relations between the Chern numbers of E?

The result of this kind for a tangent bundle case are obtained, for
example, in [1], [4] and [5] and for a general case in [6], [8] and [2].
This results can be generalized in the case when the Einstein condition
is not satisfied, but the Ricci curvature is “nice”, for example when the

This paper is in final form and no version of it will be submited for publication

elsewhere.



Ricci tensor is k-pinched. For tangent bundle case is obtained in [9] the
topological obstruction for existence of a metric with a k-pinched Ricci
curvature.

The main result in this paper is Theorem 3.5.,the generalization of
the result of Liibke(see [8]). We established the inequality
AT
a(E) 2 {} - U5} i(B)
for a holomorphic vector bundle of rank 2 with k-pinched Ricci curva-

ture. Also, we study when the equality holds in the inequality.
I wish to thank N.Bokan for useful discussions and suggestions.

2. PRELIMINARIES

In this section we will follow [7, Ch. IV]. Let (E, k) be a holomorphic
Hermitian vector bundle of rank A over an Hermitian manifold (M, g)
of complex dimension n. Then (E, k) admits a uniquie Hermitian con-
nection D and its curvature R is a (1,1)-form with values in the bundle
End(E). If s = (s1,...,51) is a local frame field for E, the curvature
form Q = (Q;) with respect to s is given by

R(s;))= Qjsi, Q=) R zd="nd’
in terms of a local coordinate system (z1,...,2") of M. We write
hij = h(si, s;) and g= ng—gdz“dfﬁ.

Now we define p and p, the Ricci and "-Ricci curvatures of (E,h)
respectively, by

i B pi _ i
(2.1) Py = Zga Ris» PiE= Zhiip;'
and
(2.2) Pa =D MR35, 5=) pavg”

Suppose now that s = (sy,...,sx), € = (e1,...,€,) and 6 = (61,...,67)
are local unitary frame fields for (E,h), TM and T*M respectively.

Then we write _
&=v-1) 6°n6"

IRI? =43 IR I



el =23 1o51* =2 lpsl*
1812 =23 15,57 =23 P81
T=2) pi=2) Pz

for the fundamental form of (M, g), the norms of the tensors R, p, p, and
for the scalar curvature 7 of (E, h) respectively. Scalar curvatures and
“-Ricci tensors of a holomorphic vector bundles (E’', k') and (E", h") are
denoted by 7', 7", p' and p" respectively.

From now on we suppose A = n = 2. Then let p and p denote the
sections of the bundles End(E) and End(TM) defined by’

h(e(s),t) = p(s,t)  and  g(@le), f) = ple, f)

for s,t € E, and e, f € TM,,p € M. The endomorphisms ¢ and p are
symmetric, so their corresponding eigenvalues r;,r, and 7,7, are real.
We will use a local unitary frame field s = (s1,32) determined by the
eigenvectors of p corresponding to r; and r, . Also, a local unitary frame
field e = (e, e2) is determined by the eigenvectors of g .

Let r = max{|ry|,|r2|}. Then, for 0 < k < 1, we say that Ricci
curvature p of (E, h) is k-pinched if

(2.3) krh<p<rh or —rth<p< —krh

holds on M. Then, clearly, ryr, > 0 on M. When k = 1, (2.3) represents
the weak Einstein condition as it was defined by Kobayashi.
The Gauss curvature 7 of (E, h) can be defined by

3

T=detp="r; -73.

The Gauss curvature 7 is §-bounded from below if
(2.4) 7> 6r

on M. The class of a holomorphic vector bundles which satisfy the
conditions (2.3) and (2.4) is denoted by & 4.
We now give the key technical lemmas of this note.

LEMMA 2.1. Let (E,h) be a holomorphic vector bundle of rank 2 over
an Hermitian surface (M, g). Then the following inequality holds

(2.5) IRIZ = 1217 + e — $RI7 - W

When (E, h) satisfies the weak Einstein condition, i.e. pis a 1-pinched,
the equality case was studied in [7]. In that case, the equality holds in
(2.5) if and only if (E, h) is projectively flat, i.e. R = 15 ® h. So it is
natural to study the equality in the general case. :



LEMMA 2.2. Let (E, h) be a holomorphic vector bundle of rank 2 over
an Hermitian surface (M, g) such that the Ricci curvature tensor p is
parallel and ry # ro on M. Then the equality

(2.6) IRIZ =121+ lle — Al
holds if and only if
E — El @ El’
and
(2.7) ﬁl . ﬁ” = i(T’ _ T“)g .

where (E' h') and (E", h") are holomorphic orthogonal line bundles. §

3. CHERN CLASSES c¢(E) AND ég(E)

We will mention now some consequences of the results from the pre-
vious section.

COROLLARY 3.1. Let (E,h) be a holomorphic vector bundle of rank 2
over a compact Hermitin surface (M,g). If the Gauss curvature of E is
nonnegative, then

A(E)Y>0 . &

REMARK 3.2: This result is already known (see [6,Thm.4.1]) because 7
is nonnegative if and only if -Ricci curvature is nonnegative or nonpos-
itive.

COROLLARY 3.3. Let (E,h) be a holomorphic line bundle over a com-
pact Hermitian surface M and let E* be the dual bundle of E. Then the
holomorphic bundle E @ E* admits no metric with positive or negative
Gauss curvature on M. |

LEMA 3.4. Let (E,h) be a holomorphic vector bundlé of rank 2 over a
compact Hermitian surface (M, g). If the Ricci tensor is k-pinched and
the Gauss curvature is (1 — k)?-bounded from below we have

e(E)=c(E)>0.
where e(E) is the Euler characteristic of E. If the Ricci curvature p

is parallel and k < 1, the equality holds if and only if (E,h) admits a
holomorphic orthogonal decomposition (E,h) = (E',h')® (E",h") with



