David J. Bradley was a member of the team
that designed and built the IBM Personal Computer.

1

Assembly Language
Programming

for the IBM
Personal Computer

DAVID J. BRADLEY

IBM Corporation

PRENTICE-HALL, INC. Englewood Cliffs, New Jersey 07632

. Library of Congress Cataloging in Publication Data
BRADLEY, DAvID J. (date)

Assembly language programming for the IBM Personal
Computer.

Includes index.

1. IBM Personal Computer—Programming. 2. Assembler
language (Computer program language) 1. Title.
QA76.8.12594B7 1984 001.64°2 83-8638
ISBN 0-13-049189-6
ISBN 0-13-049171-3 (pbk.)

Editorial/production supervision

and interior design: Kathryn Gollin Marshak
Cover design: Photo Plus Art—Celine Brandes
Manufacturing buyer: Gordon Osbourne

IBM is a registered trademark of the International Business Machines Corporation

© 1984 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means, without
permission in writing from the publisher.

Printed in the United States of America

109 8 7 6 5 4

ISBN 0-13-049171-3 {P}
ISBN 0-13-049189-b {C}

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

Preface

This book teaches you how to write assembly language programs for the
IBM Personal Computer. It also explains how to use the IBM Personal Computer
to write those programs. Finally, it shows you ways to use assembly language
programs with the rest of the system.

This is a first book in assembly language programming. Previous program-
ming experience, in a high-level language, is desirable for the use of the book.
There is no discussion of algorithm design and programming techniques. It may be
difficult for you to use this book if you have had no previous experience in writing
BASIC or Pascal or similar programs. However, the text presents material in a
way that should allow you to begin assembly programming even if you don’t know
anything about the internal workings of a computer.

The first section, comprising the first two chapters, teaches the fundamen-
tals of computer operation. It emphasizes those functions of the computer that
aren’t readily apparent when using a high-level language. This includes a
discussion of binary arithmetic and data representation. The section also deals
with the general operation of the assembler. This section may be skipped by
programmers with assembly language experience.

The second portion of the book, consisting of Chapters 3, 4, and 7, is an
explanation of the processor used in the IBM Personal Computer, the Intel 8088.
This includes a description of the 8088, its registers, and its addressing modes.
The book presents the instruction set of the 8088 together with examples showing
the use of most of the instructions. Chapter 7 is devoted to the 8087 Numeric Data

xi

xii Preface

Processor. It describes the additional data types and instructions made available
through the 8087. The chapter uses several examples to show the operation of the
numeric Coprocessor.

Where the preceding section was sufficiently broad to cover nearly all
systems using the 8086/8088 processor family, the final sections are linked directly
to the IBM Personal Computer. Chapters 5 and 6 deal with the creation and use of
programs on the IBM machine. You’ll learn how to use the assembly language
““tools.”’ These include the line editor, the assembler, and the linker, as well as an
overview description of the Disk Operating System. This section describes the
Disk Operating System as a program environment. Chapter 6 describes some of
the special tools available as part of the Macro Assembler. This includes not only
macros, but also the special data definition tools that are essential for assembly
language programming.

Chapters 8, 9, and 10 cover the hardware and ‘‘microcode’’ portions of the
IBM Personal Computer. This section emphasizes the unique aspects of the IBM
Personal Computer and the application of assembly language programming to it.
Of particular interest is Chapter 10, which describes the techniques of linking an
assembly language program to another program or system. This chapter contains
several different methods of fitting an assembly language program with another
program, or making the program a permanent addition to the system.

The author was a member of the team that designed and built the IBM
Personal Computer. I would like to thank all of the people in the Personal
Computer organization who have helped me during the preparation of this text.
Special thanks go to Dave O’Connor and Jud McCarthy, my managers during this
period. Most important, I would like to thank my wife, Cynthia, for her help and
encouragement.

David J. Bradley

Contents

Preface

Chapter 1 INTRODUCTION

Assembly Language Programming
IBM Personal Computer
This Book

Chapter2 COMPUTER FUNDAMENTALS

Binary Arithmetic

Two’s Complement
Hexadecimal Representation
Machine Language and Assembly Language
Assembly Language Syntax
Assembler Operation

Bits, Bytes, and Words

Bit Numbering

Character Set

Computer Operation
Subroutines

Stack

Interrupts

0 N O

11
12
13
16
17
19
21
22
25

Xi

iv Contents

Chapter 3 THE 8088 MICROPROCESSOR 28
8088 Programming Model 28
- General Registers 29
Addressing Registers 30
Direct Addressing 31
Address Calculation 32
Base + Displacement Addressing 33
Base + Index + Displacement 33
Mod-r/m Byte 35
Physical Addressing 36
Segment Registers 37
Segment Overrides 38
SEGMENT Statement 39
ASSUME Statement 40
Control Registers 42

Instruction Pointer, 42
Stack Pointer, 43

Flag Register, 44

Sign Flag, 45

Zero Flag, 45

Parity Flag, 45

Carry Flag, 45
Auxiliary Carry Flag, 47
Overflow Flag, 49
Trap Flag, 50
Interrupt Flag, 50
Direction Flag, 51

Interrupt Vectors 52
Chapter 4 THE 8088 INSTRUCTION SET 54
Data Movement 54
Move, 55

Exchange, 58

Contents

Input and Output, 58

Load Effective Address, 59
Load Pointer, 60

Flag Transfer, 60
Translate, 61

Stack Operations 63
Parameter Passing 65
Arithmetic Instructions 67

Addition, 67

Subtraction, 70
Single-Operand Arithmetic, 70
Compare, 71

Decimal Adjust, 72

ASCII Adjust: Addition and Subtraction, 73
Multiply, 74

ASCII Adjust: Multiply, 75
Divide, 76

ASCII Adjust: Division, 78
Convert, 79

Arithmetic Example 79
Logical Instructions 80
Shift and Rotate Instructions 83
String Instructions 87

Load and Store, 88
REP Prefix, 89

Move String, 90

Scan and Compare, 91

Transfer of Control Instructions 93

NEAR and FAR, 94

Jump Addressing, 94
Unconditional Transfers, 95
Conditional Jumps, 97
Condition Code Tests, 98
Loop Control, 102

Processor Control Instructions 104

Flag Setting, 104
Special Instructions, 105

vi Contents

Chapter 5 USING DOS AND THE ASSEMBLER 108
Disk Operating System 108
File System 109
File Names 110
Directory 111
Command Processor 111
DOS Functions 115
File Control Block 118
.COM and .EXE Files 124
Creating an Assembly Language Program 126
DOS Line Editor 127
Assembler and Macro Assembler 130

Symbol Table, 132
Cross-Reference, 133

Linker 135

Multiple Modules, 135
EXTRN and PUBLIC, 136
Link Operation, 139

Link Map, 140

DEBUG 141
Converting from .EXE to .COM 146
Chapter 6 FEATURES OF THE MACRO ASSEMBLER 150
Macros 150
Macro Arguments 154
Conditional Assembly 156
Repeat Macros 161
Macro Operators 162
INCLUDE Statement 164

Segments 165

Contents vii

Structures 171
Records 175
Chapter 7 THE 8087 NUMERIC DATA PROCESSOR 181
8087 Operation 181
8087 Data Types 183
Floating-Point Data Representation 186
8087 Real Data Formats 190
Real Number Data Definition 192
8087 Programming Model 193

Register Stack, 193
Control Word, 195
Status Word, 197

8087 Instruction Set 198

Data Transfer Instructions, 199
Control Instructions, 203
Arithmetic Instructions, 206
Comparison Instructions, 209
Functions and Transcendentals, 212

Examples 215

Powers of 10, 216

Ten to the X, 218
Floating-Point Display, 220
Quadratic Equation, 222
SIN of an Angle 224

Debugging with the 8087 227
Chapter 8 THE IBM PERSONAL COMPUTER 230
System Hardware 231
Speaker 232
Keyboard 235

Time of Day 239

viii

System Features
Display Adapters

Monochrome Display and Printer Adapter, 245
Color/Graphics Monitor Adapter, 248

Text Mode, 248

Graphics Mode, 255

Color in 320 x 200 APA Mode, 256
High-Resolution Graphics, 256

Parallel Printer Adapter
Asynchronous Communications Adapter
Game Control Adapter
Diskette Drive Adapter
Direct Memory Access

Chapter 9 THE ROM BIOS

Notes on the ROM BIOS Listing
Power-on Self-Test

ROM BIOS Interrupts

Device Drivers

User Routines, 274
Parameter Blocks, 275

ROM BIOS Data Area

Device Driver Routines

System Service

Printer and Asynchronous Communications
Keyboard

Keyboard Data, 280
Inside the Keyboard BIOS, 282

Cassette

Diskette

Diskette Data Areas, 285
Read and Write Commands, 286

Contents

245
245

257
258
261
263
265

270
271
273
273

275
276
276
278
280

283
285

268

Chapter 10 ASSEMBLY LANGUAGE EXTENSIONS AND SUBROUTINES

Contents

Verify Command, 287
Format Command, 287

Video

Video Data Areas, 290

Video BIOS Functions, 290
Mode Setting, 293

Scrolling, 293

Character Read and Write, 295
Text in Graphics Modes, 295
Graphics, 297

Write Teletype, 298

BIOS Extensions

DOS Exit and Stay Resident
High-RAM Load

Assembly Language Subroutines
BASIC BLOAD Assembly Routine
Embedded Short Program
Compiled High-Level Languages
Summary

Appendix A 8088 INSTRUCTION SET

Appendix B 8087 INSTF(UCTION SET

Bibliography

Index

290

300
300
307
314
314
319
322
325

299

326

439

333

335

CHAPTER

1

Introduction

Welcome to assembly language programming for the IBM Personal Computer.
This book teaches you how to write assembly language programs, and it uses the
IBM Personal Computer as the teaching vehicle.

ASSEMBLY LANGUAGE PROGRAMMING

Why should you be interested in assembly language programming? High-level
languages such as BASIC, FORTRAN, and Pascal are commonly used today.
You are probably familiar with at least one high-level language. If you’re currently
using an IBM Personal Computer, you know that the BASIC interpreter is part of
the system unit. Why should you bother with another programming language,
especially one that’s going to be difficult at times? Even with today’s high-
powered languages, you still need assembly language because of its power and
precision.

Assembly programs can be very powerful. Given programmers with equal
skills and abilities, the assembly language program will be smaller in size and
faster in execution than the same program written in a high-level language. This
holds true for virtually all small and medium-size programs. Unfortunately,
assembly language programs lose some of their power as the program size
increases. That’s because of the attention to detail that’s necessary for an
assembly program. As you’ll see throughout this text, assembly language requires

2 Introduction Chapter 1

you to decide each and every action of the computer. For a small program, this
lets you optimize the program to work efficiently with the computer hardware.
For a larger program, the myriad details may prevent you from doing an efficient
job of the entire program, even though some individual components of the
program will be very good. Clearly, assembly language programming is not the
answer for all programs.

Assembly language programs are also very precise. Because assembly
language allows the programmer to deal directly with the hardware, assembly
programs can do things that no other program can. Certainly for /O device
programming, where the program requires control of the individual 1/O device
bits, assembly language programming is the only appropriate choice.

Clearly, the power and precision of assembly language programming offers
advantages. But its attention to detail also causes problems. When is the correct
time to use assembly language programming?

Certainly, you must use assembly language programs when there’s no other
way to write the program. For example, IBM programmers wrote all of the 1/0
device control programs for the IBM Personal Computer using assembly language
routines. IBM needed the precision of assembly language to control the 1/O
devices and the interrupt system, where no other programming language would
work. Similarly, IBM wrote the diagnostic routines, which must check every
detail of the hardware, in assembly language.

You should also use assembly language when performance is a major
concern. This performance may be either the execution time of a program or its
final size. The FORTRAN mathematics subroutine library is an example of a
program that requires good performance, both in time and space. The math
routines are a part of every FORTRAN program, so they should be as small as
possible. Also, those routines handle all of the math functions in a FORTRAN
program, so they are used frequently. Therefore, they should execute rapidly.

What programs aren’t candidates for assembly language? Well, you can write
any program in assembly language, but a program of significant size is better
handled in a higher-level language, such as BASIC or Pascal. These languages let
you concentrate on the problem. You don’t have to deal directly with the details
of the hardware and the processor. A high-level language lets you step back and
see the forest rather than the trees.

Obviously, then, you need to mix assembly language programs with high-
level language programs. This text will concentrate on assembly language
programming for those tasks for which it is well suited, such as I/O control. In
fact, the final chapter deals directly with the problem of linking assembly language
programs with other programming languages. These methods give you the best of
both worlds. You can use assembly routines for the precise control and power
when you need it, and high-level routines for the overall program. All you have to
do is hook them together to make it happen.

There’s a final reason for learning assembly language programming. Only by

This Book 3

writing programs at this level of detail can you learn how the machine works at its
lowest levels. If you want to know everything there is to know about a computer,
you have to be familiar with its assembly language. The only way to do that is to
write programs in that language. Reading the manual alone won’t do the job.

IBM PERSONAL COMPUTER

Why does this text use the IBM Personal Computer as the basis for learning
assembly language programming? There are several reasons. First, the IBM
Personal Computer is new and powerful. As a personal computer, the IBM
machine has extended capabilities, beyond those of earlier personal computers.
As you’ll see in more detail later, the Personal Computer uses the Intel 8088
microprocessor. This processor can do 16-bit arithmetic and address over 1
million characters of storage. These capabilities give it a power much closer to
large computers than to the earlier personal computers.

Second, the IBM Personal Computer has all the development tools that you’ll
need to do assembly programming. Besides the assembler, IBM provides an
editor, linker, and disk operating system to put it all together. There’s even a
debugger to help you take it all apart and then put it back together right.

Finally, the IBM Personal Computer is a good system on which to learn
assembly language programming because of its availability. It is an inexpensive
machine, yet still offers all the capabilities that assembly language programming
requires. Even more, as a ‘‘personal’’ computer, the machine belongs to you, at
least while you’re executing your program. This means that you can try out things
that you couldn’t on a larger machine that you’re sharing with others. You can
take over the I/0 attachments and program them to do interesting things. You can
do anything you want with any part of the system. You can do this even if it brings
the system “‘down.”” Since it’s a personal machine, when there’s a problem, you
just turn the machine off and start all over. The only person you can interfere with
is yourself. As a personal machine, it makes a great development environment.

THIS BOOK

This book introduces you to the IBM Personal Computer and its assembly
language. Although the major concentration is on assembly programming, this
text describes the programming aspects of the major hardware features of the
machine. You’ll learn how the I/O devices work and how the programs make them
work correctly. You’ll also learn how to write your own assembly language
programs using the IBM Personal Computer. After you write these programs, this

4 Introduction Chapter 1

book shows you how to link them into a high-level language program or build your
program into the system.

Assembly language programming is a fascinating experience, but often
frustrating. This book uses examples to show you some programs that do work.
These examples should get you started. But the only way you can learn about
programming is to do the programs yourself. You have to make your own
mistakes to learn. Good luck, and have fun.

CHAPTER

2

Computer
Fundamentals

This chapter will explain the characteristics of computers. It will tell you how
computers work and why they do things the way they do. Some of the concepts
may be familiar to you. If you have had no previous experience with assembly
language programming, many of these operations will be new.

BINARY ARITHMETIC

All computers store information using the binary system. This means that every
item of information stored by the computer has only two choices. These choices
are labeled “‘on’” and ‘‘off,”” “‘true’” and ‘‘false,”” or *‘1°” and *‘0.”” The computer
stores these values as voltage levels. Fortunately, we don’t need to be concerned
with the voltages, only the numbers, when writing programs. From the simple
numbers 0 and 1, we can do very complicated arithmetic.

Because of the binary representation of data, computers use base 2 arithmetic
to perform their computations. Base 2 arithmetic uses only the two numbers, 0
and 1. We normally use base 10, or decimal arithmetic. In base 10 arithmetic,
there are 10 different numerals used, 0 through 9. Base 2 arithmetic can be thought
of as the system for people with two fingers.

The limitation of only 10 numerals in base 10 arithmetic does not prevent us
from representing larger numbers. We use multiple-digit numbers, where each
position within the number is a different power of 10. The rightmost digit of any

