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Preface

These notes grew out of two courses, one given in the United States and
one given in Germany on the Fundamental Theorem of Algebra. The
purpose of these courses was to present a great deal of nonelementary
mathermatics, all centered on a single topic. The Fundamental Theorem
of Algebra was ideal for this purpose. Analysis, algebra and topology each
have developed different techniques which surround this result. These
techniques lead to different proofs and different views of this impor-
tant result. It is startling how much mathematics can be introduced and
learned in this manner.

In the United States it was presented as a “capstone” course for upper
level undergraduates. Many of the topics were familiar to the students
but many were new. The goal of continually returning to a proof of the
Fundamental Theorem of Algebra gave a focus to a large body of (what is
at first glance) seemingly unrelated material. In addition, many nice ap-
plications, such as the insolvability of the quintic and the transcendence
of ¢ and 7 could be introduced. We feel that undergraduates in such a
capstone course are an ideal audience for the book. Many departments
in the U.S. are adopting the idea of a summary course. In addition, the
book could serve as a foundation reference for beginning graduate stu-
dents. We also feel that the algebra sections, Chapters 2, 3, 6, 7, could be
used, with some additions from outside sources, as an alternative version
of an undergraduate algebra course or as a supplement for such a course.
The United States version of the course covered in one semester, with
some omissions, most of the material in Chapters 1 through 7. The whole
book could be covered at a relatively moderate pace in two semesters.



xii Preface

In Germany the material was presented to a class of potential teachers.
A high school (or in Germany, gymnasium) teacher should be exposed to
a wide range of mathematical topics. This material fulfilled this objective
for this audience. It is our hope that similar teacher training courses in the
U.S. might also adopt these notes. In the course in Germany, essentially
the whole book was presented in two semesters.

We wish to thank Nicole Isermann for her extremely careful proofread-
ing of the manuscript. We also wish to thank Kati Bencsath and Bruce
Chandler for reading preliminary versions and making suggestions, and
finally, we would like to thank Paul Halmos for his helpful suggestions.

Benjamin Fine, Fairfield University, United States
Gerhard Rosenberger, Universitdt Dortmund, Germany
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~ Introduction
~ and Historical
onarren REmarks

The Fundamental Theorem of Algebra states that any complex poly-
nomial must have a complex root. This basic result, whose first accepted
proof was given by Gauss, lies really at the intersection of the theory of
numbers and the theory of equations, and arises also in many other areas
of mathematics. The purpose of these notes is to examine three pairs of
proofs of the theorem. The first proof in each pair is fairly straightforward
and depends only on what could be considered elementary mathematics.
However, each of these first proofs lends itself to generalizations that in
turn lead to more general results from which the Fundamental Theorem
can be deduced as a direct consequence. These general results constitute
the second proof in each pair.

Recall that a complex polynomial is a complex function of the form

P(2) = anz" + an12"' + - + ag,

where ay, a, . . ., a, are complex numbers and n is a natural number.
A root, or zero, of this polynomial is a complex number z, such that
P(z0) = 0.

The reasons for the different proofs of this result are due to the distinct
characteristics of complex polynomials. First of all, complex polynomials
are complex functions, that is, functions from C to C. As with real polyno-
mials, complex polynomials are everywhere differentiable and so in the
language of complex analysis are part of the class of entire functions.
In this context the Fundamental Theorem of Algebra is a direct conse-
quence of a general result called Liouville’s theorem. This result states
that an entire function that is bounded in the complex plane must be a
constant. In Chapters 2 and 3 we introduce the basic results on complex

1



2 1. Introduction and Historical Remarks

numbers and complex polynomials. We then use these to present a proof
of the Fundamental Theorem that utilizes only advanced calculus. This
proof suggests Liouville’s theorem. In Chapters 4 and 5 we then present
the results from complex function theory - specifically complex differen-
tiation, analytic functions, complex integration and Cauchy’s theorem -
needed to derive Liouville’s theorem. From this we give our second proof
of the Fundamental Theorem of algebra.

In a different direction, a complex polynomial is an algebraic object.
In this context the Fundamental Theorem of Algebra can be phrased as,
“the complex numbers are algebraically closed.” In Chapter 6 we present
the results concerning construction of field extensions and then present
a proof of the Fundamental Theorem that depends only on the facts that
odd-degree real polynomials have real roots and that given an irreducible
polynomial f{x) over a field F, a field extension Fx of F can be constructed
such that f{x) has a root in F*. This proof suggests the following gener-
alization. If K is a field where odd-degree polynomials have roots and
i = /-1, then K(i) is algebraically closed. The proof of this generaliza-
tion involves Galois theory. In Chapter 7 we present the basic results on
group theory and Galois theory needed to understand this proof.

Finally, a complex polynomial is a topological mapping. If we adjoin
the point at infinity to the complex plane we obtain a sphere, the Rie-
mann sphere $2. Since P(00) = oo for any complex polynomial P(2), P(2)
can be considered as a continuous mapping P : 8 — §2. Such topological
mappings have what is termed a winding number, indicating how much
the image of a curve C' on S? winds around when mapped to §2. In a sim-
ilar manner the function f{z) = z" winds the complex number z around
the origin. In Chapter 8 we first present a proof of the Fundamental The-
orem using the winding properties of f{z) = z". This is then generalized
to winding numbers of functions §2 — 82, from which the Fundamental
Theorem is re-obtained. To handle this last generalization we must in-
troduce some basic ideas and techniques in both point-set topology and
algebraic topology. This is done Chapters 8 and 9. This final proof requires
the most development and is therefore the least self-contained.

There are many variations of the proofs that we present. In a series of
appendices we give six additional proofs, each somewhat different from
those given in the main body of the notes. In Appendix A we give a mod-
ern version of Gauss'’s original first proof (see below). In Appendix C we
present three additional proofs arising out of complex analysis. These re-
quire a more detailed analysis of Cauchy’s theorem than the one given
in Chapter 5. This analysis is given in Appendix B. Finally, in Appendix
D we give two addditional topologically motivated proofs. These also de-
pend on the concept of winding number but differ from the two given in
Chapters 8 and 9.

We suppose that the reader has been introduced to advanced calculus
as least as far as Green’s theorem; has studied some abstract algebra, in



