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PREFACE

THE goal of this book is to condense established theoretical physics, its applications
and its mathematical equipment into a single reference volume of reasonable size
without sacrificing either logical continuity or fundamentals. In this way, each for-
mula appears in its deductive context and its origin, as well as any approximations
or assumptions which it may entail, can readily be determined.

To render this ideal more approachable the Physics section has been limited to
theories which have been well established by experiment, and their deductive rami-
fications have been terminated while the results still maintain a wide utility in
applications. Likewise, the Mathematics section has been economized by omitting
much material which can be found in tables of integrals or in compilations of the
properties of the classical functions of analysis.

To facilitate rapid extraction\of information, an attempt was made either to define
or to cross-reference every special concept and every symbol within at least a few
pages preceding its every appearance, although some exceptions necessarily occur
with the more standard symbols.

Three guides for finding information have been provided: (1) The table of contents
displays the overall organization of the material and lists the major subjects within
each chapter. (The chapter number forms the first half of each equation number.)
(2) The left-hand page headings designate the major subject area, while the right-hand
page headings mention individual items which appear on the corresponding pair of
pages. (3) The index is as complete as the author could make it and should suffice
to locate any item contained in the book.

The index has also been designed for use as a dictionary of terms and concepts,
by including even items which are merely mentioned or parenthetically defined in the
text.

Any suggestions or comments which users may feel would add to the general utility
of the book, either as a reference or as a study guide, will be gratefully received.
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PART 1

PHYSICS
PHILOSOPHY

UN~LIKE mathematics, physics has as its prime purpose the description of the real
world. The mathematician need only assure himself that his theorems follow from
his axioms, but the physicist must continually ask Nature to pass judgement on the
smallest facet of his theories. The facts of the world alone are the final judges of the
usefulness and truth of any theoretical model. Ideally, there should be no disagree-
ment whatever, but we must frequently make do with imperfect theories, being fully
cognizant of their limitations.

Yet physics (especially of all the sciences) is not a mere listing of data. Rather
physics is mainly a set of mathematical models of Nature. These models serve the dual
purpose of describing the logical interrelations of various facts and at the same time
of summarizing great masses of data whick can then be discarded.

Unlike the mathematician, the physicist must stand ready at all times to abandon
previously “established” theories. However many and varied may be the experiments
which have “verified” a theary, it has never been proved; a new fact of Nature can
always arise to contradict it. Yet “well established” theories are never wholly wrong;
if they properly describe a wide range of data, they must be good approximations and,
indeed, must appear as special cases of any more gencral theory. Thus Newtonian
Mechanices, while now known to be wrong in a philosophic sense, remains a respected
and indispensable tool of physics. Under appropriate conditions, it gives to high
accuracy the same answers as the more ponderous and inconvenient theories of
Quantum Mechanics or of Relativity, of each of which it is a special case. Not to use
it would be mere pedantry.
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CHAPTER 1

MECHANICS
A. POINT MASSES AND RIGID BODIES

Point Particles; Fundamental Concepts

DENOTE the position of a ‘“‘small” particle (mass point) by the vector, r, relative to any
convenient origin.

It is found experimentally that the acceleration, d?r/d#?, of a mass point is, in many
circumstances, independent of its previous motion and depends only on its position
(and sometimes on the time). Moreover, different mass points are usually found to
suffer proportional accelerations under the same circumstances. It is therefore useful
to introduce concepts of ‘“mass’ and “force” defined by

d’r
F=m '@ (l—l)
where m is a constant characteristic of each particle and called the mass of the particle
(chosen as unity for some standard particle) and F is the force which is then defined
by (1-1) (as applied to the standard particle or one whose mass has been determined
by comparison with the standard under identical conditions).

Newton’s Third Law* states that if a body 4 exerts a force, F, on body B then,
conversely, body B exerts an equal and opposite force, —F, on body 4. (“To every
action, there is an equal and opposite reaction.”)

Unlike the definition (1-1), this is a statement of fact which withstood 200_years
experimental investigation (but is now known to have exceptions—at least with the
simple definition, (1-1)).

The term “body’ used above ultimately refers to mass-points but, by summation
or integration, may also be interpreted as a physical system of any degree of complexity.

Note finally the implication that the forces can be regarded as “‘caused” by other
agencies.t This, too, is a question of fact and has been well borne out by experience.
In greater detail, experiment indicates that forces “from” different agencies, which
act on the same particle, may be added vectorially:

Fiotalon 4 = ZFonAdnetoi
t

From Newton’s Third Law it follows that if a system of particles is “isolated” in
the sense that all forces are produced within the system} (“no external forces act”)

d dr
and are independent of external conditions, then 0 = > F, = — (Z m; ——‘) orif v, =
dr,/dt (velocity) then dt dt
t 2 m;v, = P, a constant (1-2)

* The first two are contamed in (1-1) and are really a definition of ‘‘force.”
t Philosophically better: certain forces are present when and only when the associated sgencxes
are present (correlation, not causation).
$ More precisely, if the Lagrangian function of the system is mdependent of translations of
the coordinates describing the system.
3



4 MECHANICS OF MASS POINTS

(The law of conservation of “momentum’”, P.) Correspondingly, if we define the
momentum of a particle as p, = m,v, then > p; = constant if no external forces act.

2
The “work” done between times ¢, and ¢, by the force F acting on a particle which
undergoes displacements dr (whether “‘due to” the force or not) is defined by

W= ["F.ar (1-3)

From (1-1) ltl
W= me? =T, — T, (1-4)

where "
T — jme? (1-5)

is known as the “kinetic energy” of the particle. The work done on a particle is
always equal to the change in its kinetic energy, according to (1-4).
The change in momentum p = mv of a particle is always equal to
ty
I= f F dt = (mv), — (mv), (1-6)

4

which is called the “impulse”.

Moving Coordinates, Coriolis Forces

All of the above relations are valid in general (since, indeed, most of them are
definitions) but in moving coordinates one must remember that the “basis vectors”,
e, in r =2z, + x,e, + x,e, are also moving so that their time derivatives enter
along with those of the “‘components”, z;. Since (1-1) involves a double time deriva-
tive, some of the extra terms will appear multiplied by the (local, apparent)
velocity of the particle, dz,/d¢. These extra “‘“forces”, which have the property that
they appear only when the particle is in motion (as seen from the moving coordinates),
are known as “‘Coriolis forces”.

Potential Fields, Conservative Forces

In many circumstances F can be expressed as the gradient of a simple scalar
function:
F = —-Vé¢(r,1) (1-7)

(evaluated at the position of the particle). Here ¢(r, t) is known as the “potential
energy”’. If ¢ is actually independent of ¢, then from (1-4), (1-7) and (1-1),

(%(T + ¢) =0; T + ¢ = E, a constant (1-8)

Here I is called the total energy of the particle. Forces which keep Z constant are
called “conservative forces”.

Conversely, if the total energy is conserved, the forces must be derivable from some
¢ via (1-7). [Thus, if [v| depends only on r—for any orbit—then ¢ defined by (1-8)
satisfies (1-7).]

ExamrLE: (Newton’s law of grav1ty) The gravitational force which each of two
“particles” exerts on the other is experimentally found to be

mym oG I 11 = Is = force on #2 “due to” #1



POTENTIAL FIELDS: CONSTRAINTS 5

Here G is a universal constant of Nature. Both forces are simply obtained from
(1-7) if we take
my; my G

1
Ty — Ty -

,_¢ B

Orbit-Tracing in Potential Fields
Let U = (constant — ¢) so that F = 4+-VU and adjust the constant so that, for
the orbit desired, }mv® = U. Then if the independent variable, ¢, in (1-1) is replaced
by the path-length, s, the result is ‘
d’r dr dr

2U —— = — — 1-1

Ws=g; X [(VU) b3 dJ (1-10)
That is,

F
Curvature vector = Projection of (~;) perpendicular to the orbit  (1-11)
m

This relation can be made the basis of a numerical or graphical method for tracing the
path of a particle under the influence of conservative static forces.

Constraints

In some cases, a particle is required to satisfy such conditions as g,(r, t) = 0.
(ExampLE: motions of a particle over a surface.) Such cases are often most ecasily
treated by substituting these conditions (luutly in the equations of mgtion (or by
using the Lagrange equations; sce later).

Occaslonally, however, Lagrange’s method of undetermined multipliers is more
convenient: We have Vg, = 0; multiply these by unspecified functions, 2,(r, ) and
add to (1-1),

d2r

These equations may often conveniently be solved by algebraically eliminating the
2, and picking out solutions of the resulting relations which satisfy g,(r, t) = 0. [If
the constraining forces, 1,Vyg,, are desired, they may then be found by returning to
(1-12).]

Systems of Mass Points *

As already hinted, a system of many mass points, m;, is described by a set of
equations (1-1), one for each particle, along with a prescription, perhaps of the form,
(1-7), for the forces. The total momentum and total kinetic energy of the system
are defined as the sum of those of the individual particles:

m, =F, (#=1,---,n; 3n equations) (1-13)
P = Zm.v.; T=733mp? (1-14)
and if F, = —V ¢ (that is, if (F,), 8 - ¢(r;, Ty, -+ -, T, ), etc.) then

T + ¢ = E, a constant, the energy of the system

Note that the concept of potential of a particle of the system need not have meaning.

2



6 MECHANICS OF SYSTEMS OF PARTICLES

Center of Mass

If we define

1
r,.= M ;m(ri (M = ;”‘4) (1-15)

as the position of the ‘“‘center of mass’ of the system, then P — M(dr,/dt) and from
(1-13) and (1-14),

dp der,
'at‘-_—?F‘, or: F=Mdt2

where F is the total external force acting on all the particles. (By Newton'’s third law,
the overall sum of internal forces is zero.) Thus the center of mass of a system moves as
if all the mass and all external forces were concentrated there. Thus macroscopic bodies,

™ whether rigid or not, can be treated as point particles, if we wish to know only the
motion of the center of mass.

(1-16)

Kinetic Energy
From (1-14) and (1-15) it follows immediately that

T =M ? + 2 dm|v, — v, [? - (1-17)

(where v, = dr,/d?). That is, the kinetic energy of the system can be expressed as
that of a mass point M = > m, concentrated at the center of mass plus the kinetic

energy due to motions of the particles relative to the center of mass.*

Angular Momentum; Torque
To indicate gross features of the additional motions of the system around its center

of mass, definet
J=2mr;Xv, L=3r,XF, (1-18)

t

called respectively the total “angular momentum” and total ‘‘torque” (or ‘“moment’’)
on the system. From (1-13), it follows that

aJ_
dt

as a ‘‘gross”’ equation for the motion about the center of mass.

(1-19)

Equation (1—19) is the anti-symmetric part of the more general dyadic relation /for each
particle)
d
a mrv = rF + mvv (1-20)

which is also an immediate consequence of (1-1). The symmetric part of this relation is

d
—r-F=2T—a(r-p)

* In view of (1-16), it might appear that the extra term in (1-17) violates the general principle
(1-4). It does not, of course, and the reason is that, despite (1-16), the external forces do not
actually act on r, and this must be taken into account in computing the work done by them.

t Note that the order of the factors in (1-18) is purely a matter of convention; the correspond-
ing sign-ambiguity indicates that J and L are “‘axial’’ vectors.



COLLECTIVE RELATIONS 7

t(l
If the system is such that r.p is bounded, then taking time averages [(l/to) f e de;
) 0
to— oo] gives the ‘‘virial theorem’’; summing over all the particles of the system:

XDue = —(Br-Fy, (1-21)

If both the positions and the velocities are taken relative to the center of mass, one
obtains the same equation. Thus if

Jo=2m(r; —r) X (v, —v)=J —r. X P (1-22)

and if
L=3(r—-r)XF,=L—-r,XF (1-23)

1

then from (1-16) and (1-19)

dJ,
e — 1-24
a — L fl-<4)
quite independent of the motion of r,.

In particular, if no external forces act and the mutual (equal and opposite) forces

between two particles lie on a line joining them,* then L, = 0 so that.J, is constant.

Rigid Bodies
For a rigid system of mass points, equations (1-16) and (1-24) completely determine
the entire motion:

First, define the following -tensor (“moment of inertia tensor’’—relative to the
center of mass),

Sc = th‘[iri - rc12 11— (ri - rc)(ri - rc)] (1'25)

(the last term is not a dot product) where 1 is the unit tensor and r, is the position of
the center of mass.

Notethat, just as r, is defined independently of the coordinate system, so the tensor J,
is completely defined by (1-25) quite independently of whether the body is in motion or not.
If it is moving, the components of J, in a fixed coordinate system may change (as do those
of r,) but the tensor ‘‘changes’ only in the same sense that r, changes.

For a rigid body, it follows from (10-26) that
Vi—V,=wX (r; —r,) (1-26)

where w (which can be time-varying) is known as the instantaneous angular velocity
of the body. From (1-26), (1-25), (1-22) and (1-17) it then follows that

J,=3, 0=w-3, (1-27)
and thatt

T=3Mv}+ i 3, w (1-28)
The main advantage of these relations appears upon transforming to a coordinate
system fixed in the body. Then the components of J, become constants and, moreover,

* More generally: if the Lagrangian function of the system is independent of rotations of the
coordinates describing the system.

t Note the identity, |w X af? = (w X a):(w X a) =[(w X a) Xw]-a = —a [w(w-a)
—alw - -w)] = vkt — (w-a)



8 MECHANICS OF RIGID BODIES

because these components form a symmetric (and thus Hermitian) matrix, there is
one set of (orthogonal) coordinates, x, ¥, z in which 3, is diagonal:

(B =1; 04 (constants) (1-29)

The three constants, 7;, are known as the “principal” moments of inertia. It is easily
shown [by taking the orizin at r, and writing out explicitly the “zz” component of
(1-25)] that these constants are given by
I, =2 myd+ 23, ete. (1-30)
1

Thus the principal moments of inertia are necessarily positive.

From (10-27) it follows that, even though the coordinates are fixed in the rotating
body, the equations of motion (1-24) take, with the help of (1-29) and (i-27), the
form -

dJ, d.J, d,w
L“:'dit_ddt_ +wxdJ =3, T +wX[JI, - w] (1-31)
or, in components:
dw, ]
L.t = Ix.t 7(17[ + (Izz - Ivu)wvws
dow,
Lv = IW/ —d‘t— -+ (ImB — I")Cl)‘a)z r (1_32)
dw
L‘ = Izz CFZ + (Ivv — Iu)w,w,J

These equations completely determine the motion of the rigid body about its center of
mass. Note that the simple form (1-32) is obtained only if principal axes fized to the
body are used. Note also that if L = 0, w is still not constant unless two of its three
components (in this system) vanish; that is, the only stable axes of rotation for a free
body are the three principal axes.

Rigid Body with One Fixed Point

If a body is “anchored” at one point* but is otherwise free, it becomes useful to
take that point as the coordinate origin, r = 0, and then define a moment of inertia
tensor:

3= me['izl —r;r] (1-33)

Unlike 3J,, this tensor does depend on the position of the coordinate origin but, of
course, is otherwise independent of the coordinates or motion of the body.
Since v=0 at r = 0, it follows from (10-26) that v; =w X r; for some (time-

varying) w, the instantaneous angular velocity. Then, as above, .
J=w'I=Jw (1-34)
T=}0w S w . (1-35)

Note that (1-35) includes the term, $ M v} of (1-28) and that both. (1-34) and (1-35)

are special consequences of the fact that v = 0 when r = 0.

* The point need not be actually a part of the body; in some special cases (gyro top in a cage,
for example) an imaginary extension of the body may be used.



