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PREFACE TO THE CLASSICS EDITION

Since 1985, when this book was first published, interest in practical Lanczos algorithms for computing
eigenvalues of large scale problems has soared. The developments since 1985 could fill easily a new two-volume

book.

The computers of today are many orders of magnitude more powerful than the computers that we used in
the early 1980s when the algorithms which are described in this book were developed. In 1984 we labeled
problems of size 200 or larger as large scale and speculated that our codes should be useful on problems up to
size 10,000.

Today, eigenvalue problems that involve millions of degrees of freedom are of great interest for many
different kinds of scientific and engineering studies, and, in fact, parallel extensions of the real symmetric
Lanczos algorithm described in Chapter 4 of this monograph have been used on problems involving more than

a million variables.

The focus of this research monograph is on symmetric problems. Symmetric does not, however, imply
Hermitian. The discussion not only covers real symmetric and Hermitian problems but also covers singular

value problems and complex symmetric problems.

This monograph is unique in terms of the types of algorithms that are presented. Most of the numerical
analysis community focuses on procedures that are firmly entrenched in the orthogonal world where spectral
entities of orthogonal projections of operators are used to obtain corresponding approximations for the original
problem. The use of orthogonal projections ensures direct relationships between these projections and the

original problem. The popular package that is described in [1] utilizes this approach.

The algorithms in Chapters 4, 5. and 6 are based upon a different paradigm. The justification for our
approach rests upon the nonintuitive discovery that the real symmetric Lanczos recursion is numerically stable
in finite precision arithmetic [2, 3]. The analysis in [2, 3], when combined with our nonintuitive discovery that
the eigenvalues of any Lanczos matrix can be systematically sorted into distinct subsets of good and spurious
eigenvalues, enabled the development of practical Lanczos eigenvalue algorithms that do not require reorthog-

onalization. Details are in Chapter 4.

These algorithms function in two stages. Eigenvalues (singular values) are computed separately from
corresponding eigenvector (singular vector) approximations. Separating these computations has two significant
consequences. First, the amount of memory required for the eigenvalue computations is minimal, only some
small multiple of the size of the original problem matrix. The size of this multiplier depends upon what the user
wants to compute and upon the distribution of the spectrum of 4. With minimal memory requirements, very
large problems can be handled on not very large computers, and huge problems can be handled on large

computers.

Second, the achievable accuracy of the eigenvalue approximations obtained by one of these algorithms
can be greater than that achievable using a classical approach which incorporates reorthogonalization with
respect to eigenvector approximations which are accurate to only a few digits. The procedures in Chapters 4, 5,
and 6 do not invoke any type of deflation, and as long as the errors in the Lanczos recursions remain small, there

is no degradation in the accuracy as more eigenvalue approximations are computed.
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The eigenvalue procedures described in Chapters 4, 5, and 6 are simple to parallelize. There are no
potential communication bottlenecks associated with a need to reorthogonalize every vector with respect to all

vectors previously generated.

The penalty for not being orthogonal is that the matrix-vector multiplications required for the Lanczos
recursions must be computed consistently at each stage of the Lanczos recursion. This limits the use of these
methods in applications where the matrix-vector computations are inexact with varying accuracy. For example,
these methods would not work well when these computations are accomplished via finite differences of
nonlinear functions or as the numerical solution of a differential equation. In such a situation, the algorithms in
Chapters 4, 5, and 6 could be used to obtain limited information about the spectrum but would eventually
diverge. An approach based upon orthogonalization, such as in [I], may continue to function in such an

environment, but the accuracy of the computed values may be difficult to determine.

Chapters 6 and 7 contain research that is not available in archival journals. In Chapter 6 we demonstrate
that much of the analysis for the real symmetric Lanczos algorithm in Chapter 4 can be formally extended to

the complex symmetric case.

The algorithms in Chapter 7 differ from those in Chapters 4, 5, and 6 in that they are block methods and
belong to the orthogonal world. Reorthogonalization of vectors is invoked but in a very limited way. Of primary
importance in Chapter 7 is our proposal for the implicit deflation of nearly dependent vectors from blocks. This
form of deflation accelerates convergence, allows converged eigenvector approximation to continue to converge,
and mollifies the negative effects which vector deflation can have upon approximations which have not yet

converged. Details are in Chapter 7.

Algorithms that are based upon the work in this book, in spite of their relatively advanced age, are still
being used. See, for example, [4], which contains numerical comparisons of the algorithm described in Chapter
4 with that in [1].

Volume 2 of this book, which is not being reproduced in the SIAM Classics in Applied Mathematics
series, contains listings of all of the original implementations of the algorithms that are discussed in this
monograph. The text for Volume 2, along with the source code for each of those listings, is available at the

numerical analysis community Web repository, www.netlib.org, under the name “lanczos.”

We hope that republication of this book will be of benefit to the computational physics, chemistry, and
engineering communities that have shown interest in these types of algorithms. We also hope that students in
the numerical linear algebra community will find this book useful as a means for building appreciation for the

potential gains that may be achievable by thinking outside of the orthogonal box.

Regrettably, my co-author, Ralph Willoughby, passed away in July 2001 prior to the republication of our
book in the SIAM Classics in Applied Mathematics series.

Ralph and 1 worked together from 1977 to 1991. Most of our research on “symmetric™ problems is
contained in this book. From 1984 through 1991 the focus of our work on algorithms for eigenvalue problems
moved to nonsymmetric problems and to the extension of many of the ideas in this book to those types of

problems.

Our joint publication in 1991 provided strategies for selecting appropriate matrix shifts for use in either

symmetric or nonsymmetric shift and invert algorithms.
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I wish to express my personal gratitude to Ralph’s wife, Nona Willoughby, for her support in the republi-
cation of this book.
Jane Cullum

March 2002
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PREFACE

Energy levels, resonances, vibrations, feature extraction, factor analysis - the names vary
from discipline to discipline; however, all involve eigenvalue/eigenvector computations. An
engineer or physicist who is modeling a physical process, structure, or device is constrained to
select a model for which the subsequently-required computations can be performed. This
constraint often leads to reduced order or reduced size models which may or may not preserve
all of the important characteristics of the system being modeled. Ideally, the modeler should
not be forced to make such a priori reductions. It is our intention to provide here procedures
which will allow the direct and successful solution of many large ’symmetric’ eigenvalue
problems, so that at least in problems where the computations are of this type there will be no

need for model reduction.

Matrix eigenelement computations can be classified as small, medium, or large scale, in
terms of their relative degrees of difficulty as measured by the amount of computer storage and
time required to complete the desired computations. A matrix eigenvalue problem is said to be
small scale if the given matrix has order smaller than 100. Well-documented and reliable
FORTRAN programs exist for small scale eigenelement computations, see in particular EIS-
PACK [1976,1977]. Typically those programs explicitly transform the given matrix into a
simpler canonical form. The eigenelement computations are then performed on the canonical
form. For the EISPACK programs the storage requirements grow as the square of the order of

the matrix being processed and the operation counts grow cubically with the order.

A matrix eigenvalue problem is said to be medium scale if it is real symmetric, and if it is
computationally feasible to compute the eigenelements by using Sturm sequencing and bisection
in combination with inverse iteration directly on the original matrix. For example, a band

matrix with a reasonable band width will be said to be of medium scale.

Matrix eigenvalue computations are said to be large scale if the size of the matrix and the
pattern of the nonzeros in the matrix preclude the use of EISPACK-type procedures or of a
Sturm sequencing/bisection/inverse iteration approach. For example, if the given matrix has
order larger than 200 and is not banded, then we would classify the associated eigenvalue
computation for that matrix as large scale. In most of our experiments, large scale has meant of

order greater than 500.

We focus on large scale, 'symmetric’ matrix cigenelement computations. Symmetric is in
quotes because we include a procedure for computing singular values and vectors of real
rectangular matrices. In addition we also include a procedure for computing eigenelements of
nondefective complex symmetric matrices. Such matrices do not possess the desirable proper-

ties of real symmetric matrices, and the amount of computation required to process them can be
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significantly more than that required in the real symmetric case. We will not address the

general nonsymmetric eigenvalue problem.

This is a research monograph intended for engineers, scientists and mathematicians who are
interested in computational procedures for large matrix eigenvalue problems. The discussion
focuses on one particular subset of one particular family of procedures for large matrix eigenva-

lue computations. We are interested in Lanczos procedures.

Lanczos procedures derive their name from a famous (fifteen years ago some people may
have been inclined to say infamous) 3-term recursion that was originally proposcd as a means of
transforming a general real symmetric matrix into a real symmetric tridiagonal matrix. Within
the scientific community we find two basic approaches to Lanczos procedures. One approach
maintains that ’global orthogonality is crucial’ and the other approach maintains that ’local
orthogonality is sufficient’. This terminology is explained in Chapter 2, Sections 2.4 and 2.5

where we briefly survey the literature on Lanczos procedures for eigenelement computations.

Our emphasis is on computation. We focus primarily on our research on single-vector
Lanczos procedures with no reorthogonalization. These procedures belong to the class of ’local
orthogonality is sufficient’ procedures. The material is organized into two volumes. This
volume contains the material necessary for understanding the proposed Lanczos procedures.
The second volume contains the FORTRAN codes and documentation for each of the Lanczos

procedures discussed in this volume.

Users with large problems are concerned about the amounts of computer storage and time
required by the procedures which they have to use. Our single-vector Lanczos procedures are
storage efficient. In most cases they are also time efficient if the matrix, whose eigenvalues
(singular values) are to be computed, is such that matrix-vector multiplies can be computed
rapidly and accurately. Typically if the given matrix is sparse, in the sense that there are only a

few nonzero entries in each row and column, then this can be achieved.

Some of what is presented is new and has not yet been published elsewhere. Much of
what is presented has appeared at least in preliminary form in papers and reports published in
various places. It is hoped that by bringing all of this material together in one place, that these
results will prove useful to a wide variety of users in the engineering and scientific community.

Jane K. Cullum
Ralph A. Willoughby
July 1984



INTRODUCTION

We consider the question of the computation of eigenvalues and eigenvectors of large,
'symmetric’ matrices. While in a strictly mathematical sense, the scope of this book is very
narrow, the potential applications for the material which is included are important and
numerous. Perhaps the most familiar application of eigenvalue and eigenvector computations is
to structural analysis, studies of the responses of aircraft, of bridges, or of buildings when they
are subjected to different types of disturbances such as air turbulence, various types of loadings,
or earthquakes. In each case, the physical system being analyzed varies continuously with time,
and its true motion is described by one or more differential equations. Matrix eigenvalue
problems and approximations to this motion are obtained by discretizing the system equations in

some appropriate way.

For a given matrix A, the ’simple’ eigenvalue-eigenvector problem is to determine a scalar
A and a vector x#0 such that Ax = Ax. In structural problems, one typically encounters the
generalized eigenvalue problem Kx = AMzx, involving 2 different matrices, a mass matrix M
and a stiffness matrix K. In fact the problems there can be nonlinear quadratic eigenvalue
problems, see for example Abo-Hamd and Utku [1978]. However, the ’solution’ of a lineariza-
tion of one of these quadratic problems is often used as a basis for reducing the given nonlinear
cigenvalue problem to a much smaller but dense generalized eigenvalue problem. In such a
problem a few of the smallest eigenvalues and corresponding eigenvectors may be required or in
some cases in order to determine the response of a given structure to external disturbances it
may be necessary to compute eigenvalues and corresponding eigenvectors on some interior
interval of the spectrum of the given matrix. In structures the matrices used are typically
banded, that is all of the nonzero entries are clustered around the main diagonal of the system
matrices. For many years simultaneous iteration techniques have been applied successfully to
shifted and inverted matrices (K — pM), using equation solving techniques designed for band

matrices.

Very large matrix eigenvalue problems also arise in studies in quantum physics and
chemistry, see for example Kirkpatrick [1972] and Gehring [1975]. The matrices generated are
large and sparse. Typically significant numbers of the eigenvalues of these matrices are
required. An entirely different kind of application is the use of eigenvectors in heuristic
partitioning algorithms, see for example Barnes [1982]. For the particular application which
Barnes considered, the placement of electrical circuits on silicon chips, the goal was to position
a large number of circuits on a given number of chips in such a way that the resulting number of

external connections between circuits on different chips was minimized.

Other applications for eigenvalue/eigenvector computations occur in quantum chemistry,

see for example Nesbet [1981]; in power system analysis, see for example Van Ness [1980]; in
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oceanography, see for example Winant [1975] and Platzman [1978]; in magnetohydrodynamics,
see for example Gerlakh [1978]; in nuclear reactor studies, see for example Geogakis [1977]; in
helicopter stability studies, see for example Hodges [1979]; and in geophysics, see for example

Kupchinov [1973].

As we said earlier we are considering the question of computing eigenvalues and eigenvec-
tors of large 'symmetric’ matrices which arise in various applications. The word symmetric is in
quotes because we also present procedures for two types of matrix computations which are not
symmetric in the ordinary sense. The basic ideas which we discuss are equally applicable to any
matrix problem which is equivalent to a real symmetric eigenvalue/eigenvector problem. We
consider scveral such equivalences. These include Hermitian matrices, certain real symmetric
generalized eigenvalue problems, and singular value and singular vector computations for real,
rectangular matrices. We also consider complex symmetric matrices which are not equivalent to

real symmetric matrices.

The actual scope of this book is limited to a particular family of algorithms for large scale
eigenvalue problems, the Lanczos procedures. Other types of eigenelement procedures suitable
for large matrices exist, most of which are based upon either simultaneous iterations or upon
Rayleigh quotient iterations, see Bathe and Wilson [1976] and Jennings [1977] for complete and
very readable discussions of simultaneous iteration procedures. The research on Rayleigh
quotient iteration procedures is scattered. Parlett [1980, Chapter 4] discusses the theoretical
properties of such procedures and gives references for interested readers. We do not cover any

of the non-Lanczos procedures in our discussions.

The research on Lanczos procedures for eigenelement computations (and for solving
systems of equations) continues. Although many interesting results have been obtained, many
of the theoretical questions concerning Lanczos procedures have not been satisfactorily
resolved. Much of the existing literature on Lanczos procedures has not adequately incorporat-
ed the effects of roundoff errors due to the inexactness of the computer arithmetic. Numerical
experiments with various ILLanczos procedures have however clearly demonstrated their advan-
tages and capabilities. Many different people have contributed to this research, and we
apologize if we have neglected to mention one or more of these authors in our discussions or if

for the authors we do mention we have not referenced all of their papers on this subject.

The demonstrated computational efficiences and excellent convergence properties which
can be achieved by Lanczos procedures, have generated much interest in the scientific and
engineering communities. Parlett [1980] is primarily devoted to discussions of small to medium
size real symmetric eigenvalue problems where other type of eigenelement procedures are
applicable. However, Chapter 13 of that book is devoted to Lanczos procedures for large
matrices, but that discussion focuses on the ’global orthogonality is crucial’ approach to Lanczos

procedures and there is not much discussion of the ’local orthogonality is sufficient’ approach
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which we use in our single-vector Lanczos procedures. Specific comments regarding the
differences between these two approaches are given in Sections 2.4 and 2.5 of Chapter 2. We
focus primarily on one subset of the Lanczos eigenelement procedures, the single-vector

Lanczos procedures which do not use any reorthogonalization. Iterative block Lanczos

procedures with limited reorthogonalization are also discussed but to a lesser extent.

This book is divided into two volumes. This volume provides the background material
necessary for understanding the Lanczos procedures which we have developed and gives some
perspective of the existing research on Lanczos procedures for eigenvalue or singular value
computations. The second volume contains FORTRAN programs for each of the Lanczos
procedures discussed in this volume. We have tried to make these volumes self-contained by
including the material from matrix theory which is necessary for following the arguments given.
Both volumes of this book should be accessible to engineers and scientists who have some
knowledge of matrix eigenvalue problems. References are given to other books and papers

where the interested reader can pursue various topics discussed.

Chapter O is intended as a reference chapter for the reader. Basic definitions and concepts
from matrix theory which are used throughout the book are listed. Our notation is specified and
special types of matrices are defined, along with special types of matrix transformations and

projections.

Chapter 1 contains brief summaries of fundamental results from matrix theory which are
needed in later chapters. Properties of real symmetric matrices, of Hermitian matrices, and of
real symmetric generalized eigenvalue problems are summarized. Sparse matrices are discussed

along with sparse matrix factorizations.

Chapter 2 begins with a description of a basic single-vector Lanczos procedure for
computing eigenelements of real symmetric matrices. Properties of this procedure are derived,
assuming that the computations are being performed in exact arithmetic. However, we are
interested in Lanczos procedures which do not use any reorthogonalization and must therefore
be concerned with what happens in finite precision arithmetic. In Section 2.3 we summarize the
results obtained by Paige [1971,1972,1976,1980], assuming finite precision arithmetic. These
results are the basis for the arguments which are given in Chapter 4 to justify our Lanczos
procedures with no reorthogonalization. In Section 2.4 we discuss the question of constructing
practical Lanczos procedures, that is, procedures which are numerically-stable in finite precision

arithmetic. Section 2.5 consists of a survey of the literature on Lanczos procedures.

Chapter 3 contains proofs of several basic properties of general tridiagonal matrices,
including determinant recursions and formulas for computing eigenvectors from the determinants
of the matrix, along with comments on inverse iteration computations. We need these proper-

ties in Chapters 4, 5, and 6.
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Chapter 4 is the main chapter of this volume. Here we develop the single-vector Lanczos
procedure with no reorthogonalization for real symmetric matrices. Included is a discussion of
the relationships between Lanczos tridiagonalization and the conjugate gradient method for
solving systems of equations. This relationship is used to construct a plausibility argument for
the belief that the ’local orthogonality is sufficient’ approach is legitimate. The key to the
success of these types of eigenvalue procedures, an identification test which sorts the ’good’
eigenvalues from the ’spurious’ ones, is developed in Section 4.5. This test is justified heuristi-
cally using the connection of the Lanczos recursion with conjugate gradient iterations. Results
of numerical experiments are used to demonstrate the performance of this procedure on
different types of matrices. FORTRAN code for this procedure is given in Chapter 2 of
Volume 2. Chapters 3, 4, and S of Volume 2 contain respectively, FORTRAN codes for
corresponding Lanczos procedures for Hermitian matrices, for factored inverses of real symme-

tric matrices, and for certain real symmetric generalized eigenvalue problems.

Chapter 5 addresses the question of constructing a single-vector Lanczos procedure for
computing singular values and singular vectors of real rectangular matrices. A general discus-
sion of basic properties of singular values and singular vectors and of the relationships between
singular values and eigenvalues is given. Section 5.3 contains a very brief discussion of several
applications of singular values and vectors. Section 5.4 centers on our single-vector Lanczos
procedure with no reorthogonalization. Results of numerical experiments are included to
dcmonstrate the performance of this procedure.  FORTRAN code for this procedure is given in

Chapter 6 of Volume 2.

Chapter 6 addresses the question of constructing a single-vector Lanczos procedure for
diagonalizable complex symmetric matrices. This class of matrices is genuinely nonsymmetric,
possessing none of the desirable properties of real symmetric matrices. Relevant properties of
complex symmetric matrices are included. The Lanczos procedure which is proposed maps the
given complex symmetric matrix into a family of complex symmetric tridiagonal matrices.

FORTRAN code for this procedure is given in Chapter 7 of Volume 2.

Chapter 7 addresses the question of iterative block Lanczos procedures. First a practical
implementation of the block Lanczos procedure given in Cullum and Donath [1974] is dis-
cussed. We then describe a recently-developed hybrid procedure which combines ideas from the
single-vector Lanczos procedures and from the iterative block procedure. FORTRAN code for

this hybrid procedure is given in Chapter 8 of Volume 2.
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