2 % B R 5

PEARSON

HTCP/IP
BETT MR BLE

— K-S A At SR

(Llnux/POSIXﬁﬁi%ﬁﬁ)
I\I’IPE\:OR}\I;(/T&I P Internetworklng

CLIENT-SERVER PROGRAMMING AND APPLICATIONS W'th T C P/ IP

Client-Server Programming

and Applications
Linux/POSIX Sockets Version

DOUGLAS E. COMER
DAVID L. STEVENS

Douglas E. Comer
David L. Stevens

TFIY & pEAL.

=) PUBLISHING HOUSE OF ELECTRONICS INDUSTRY http://www.phei.com.cn

[%]

ESMTREIR b R 5

1 TCP/IP i#1T M PR E %=

FoE—FEP -IRESBRESENA
(Linux/POSIX £ 1R)
(X M)

Internetworking With TCP/IP

Volume III: Client-Server Programming and Applications
Linux/POSIX Sockets Version

£ Douglas E. Comer
David L. Stevens

TFIYE & AL
Publishing House of Electronics Industry
Jtat - BEUING

mEE T

AR TRV KB, 2 BT EA SRR A FOT R LN IR S T E 2% 5, B A
FNSMER BN A T T TCPIP B H5E, HEHNAMSETARA, REMFRERREE, MEEm, &
NGB, WEEEHS. 20 =%, E28 BN HREF BRI TCPIP, BAPIR 7% -
B, FFEET AMAET PR RS A, RO T SR, R T R MR E RO

Original edition, entitled INTERNETWORKING WITH TCP/IP, Volume IIl: CLIENT-SERVER PROGRAMMING AND
APPLICATIONS, LINUX/POSIX SOCKETS VERSION, 1E, 9780130320711 by DOUGLAS E. COMER, DAVID L.
STEVENS, published by Pearson Education, Inc., publishing as Prentice Hall, Copyright © 2001 by Prentice Hall, Inc.
All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage retrieval system, without permission fromn
Pearson Education, Inc.

China edition published by PEARSON EDUCATION ASIA LTD., and PUBLISHING HOUSE OF ELECTRONICS
INDUSTRY, Copyright © 2009.

This edition is manufactured in the People’s Republic of China, and is authorized for sale only in the mainland of China
exclusively (except Taiwan, ,Hong Kong SAR and Macau SAR).

A F5 61 Pearson Fducation 354 2 F B AR TN A PR A T o F Toly A iittd o R4 i B B ar, A15L
AT A B T b 2 A AT AT R 4

BERSAS BR 7 H B KBS B AR & AT

AN Pearson Education X5 #H H MUEE BIBOEBDAr %, TAREEANIRHE .

ARG EHESICES B 01-2009-3937
BEHEER&E (CP) ¥iB

FITCPIP HATRIBREIE. % 3 %, &/ - RG A SN : Linux/POSIX EHEFHR = Internetworking with
TCP/IP. Vol. 3, Client-Server Programming and Applications, Linux/Posix Sockets Version: ¥ 3C/ (35) B8R
(Comer, D.E.), () $3 X (Stevens, D. L.) F. —db5l. B TR, 2009.8

(ESHT BRI B 25D

ISBN 978-7-121-09187-2

LA 0.OFb @8- M. OB - @5 T - 8 - 530 @ Linux BAE RS - BIF T -
M -E3r V. TN915.04 TP316.89

v [AR B A CIP B (2009) 55 109629 5

FR g HEFE
AT PS5
B R dbstmT R FUEELRI)
ES 1T En S SEEE R AT
HEREAT: T Tl st
SR T HE 173 (558 k% 100036
A 787 x 980 1/16 Efgk. 39.5 FH. 885 TF
Bl ¥k. 20094E8 HE 1 RETRI
E o i 69.007T

JUER I S 6,7 Tall 8 AR B0 I 3545 BB Rl B, S5 I MK B e, S &L, R RTHKR. BR
KA Mg (010) 88254888,

FEEBFIE KR4 2 2lts@phei.com.cn, BWARRAXZRTE K ARF % dbgq@phei.com.cn,

R4k . (010) 88258888,

tH hR i A

AP S EI0FEREEREFMASZRIOEER T, 2 E 7 RS A RS
B, TEREMA WTO FI4K, ¥k —GEMEREE R —RIT AABMLERE&SFHF
BEAEFZ— FERFMBARTHAABNS S5E5E, ZFETXTE PR S BRI RN # .

AT, BT ESFEERIEEBRESUR A F R AR E R, R EHT &
il 5 B PR LR, A AR & S B ROE TE A R 265 BRI B AR IR 5 F RS ME 55 20 ML T8 B bl
Bobr, LAMEREEFEVEC: FISYGE EERReHKE

M Dl th Rt AR Z A5 [EAME B BB EE, BIFHART “ESMTRYERESH &R
)7 B, XEHMBEEFRLET . G5 . BRE, A AR IRREY , WA AR
HF, LENAFBER . RFEEAL ., RIRVZREIA ST EA R, 7 RIAR 5 ik fm g b
B XMW W FR 5 QAR SR BIERE . HTEHHL 545 Bk S HRs
. BRI SRR, HfES | BEEGRS S, 5O TRE, M, RATEENS5ET —
SO T 3 SR RREOR , A8 2 BAAS AT SC IR 2 A SO0, 0 B) 5 B AR A4 B S TR AR SR A
N A RIFRR AR

TEE A5 8ERE |, FATRERIEFEE S0 4 th AR m) AR S A AT , QW Pearson Education H5 45 #
BHMRER . EHF —A/RBEHRER | BRE BB G . SIBFRF MRS, #8252k
VT AR E AR R B EF BRI - BHER(Douglas E. Comer) BURR - THEAK I William
Stallings). MA4E - BHF/R (Harvey M. Deitel), JUHHT « 73K 5% (Uyless Black) %%,

IR OREUR B SR B BRI &, WA1E TiE R dbe e At iR Ry 2
HARA . FlAGERYE . MRl WL BRET RS, SRRk, ek,
EBF R R AR R T RFHEE AR RNEE NG THINS 5 TR RV B i | 3%
AL TAE .)P BEA RSB B T206 . ML, AR BT IILHERFER I L H A
AT,

FEZRINE R . BIFMgE N TR, FRREM R, BT KB4 TH,
X PR B AT R S UE ;s S FRARIEaT JRA B Ll xt 1 RHHERR . ERHIR 8 2T AR E X,
XTHRCEM P EBAER, BILES SEEBREMM T HERESE T, BT T8I,

Vo, AR 5 HSME 2 R R B 1E, IR — S b BB SRR, 7 e IR)
R, S5, BATKLRSINR 54 A BT FIE R,) KT A 5130 £ 609 E MU T Hob
MEE4, AREIFEIRSEA R RS EIRECA A RS 1,

FL b AR

£

pi

ZESE

/TR [RRER

ak s

5K B

FMHMERE

JERUR S
H R E B et
R REE S TR ET
AU R AR DT A i

LA R B B
RIS R, B 2 0 2 AT

BRERFATENB A SRR AR
FEl {5 B AL BRI £ 205 AR e SR

BIERFHENA A SEORREE . LS
B AN A B i Bl 41

ENEPNEY 5 SN INE = €
EREMZEEARPITTFR L FAE . A I

SRR 5 TR R
AT AL AT

EEPRBIRET IO L. BRI
FERFRN AR S S, ek

BB E R KA EN A B8R . R0
AHE BT AR A I R E A SR R EER

T bR R B T AR A

Foreword

It is a singular honor to introduce open source readers to the third volume of Dr.
Douglas E. Comer's remarkable series: Internerworking with TCP/IP.

The history of open source and TCP/IP are magnificently intertwined: you can’t
have collaboration without a network to connect the collaborators! Further, some of the
very first open source software were implementations of the TCP/IP protocols. 1
remember the early 80’s, long before “‘open source’” was today’s media darling. In
those days, there were a handful of researchers who understood the problems of network
architectures and implementations. Doug was among their leaders — the principal of
an extensive research program and waging a multi-front attack on the problems we
faced.

I remember the early 90’s, when we first began to see the push toward moving the
technology to the large engineering communities that were hungering for knowledge
and solutions. In those days, it was a mighty struggle for those engineers to build
internet-based environments for their corporations. Doug was there to educate and in-
form them — making the underlying complexity accessible to them and providing them
with hard-eamed insights.

And now, [see the early 00’s, where a new generation of designers are writing dis-
tributed applications for the Internet. In these days, we hear of many exciting Internet
applications, such as napster, gnutella, and infrasearch. Surprisingly, few of today’s
developers have a grasp of solid network engineering principles — bluntly, they lack an
understanding of the basics, and this lack of understanding inevitably leads to applica-
tions that don’t scale well or that just plain do not work.

It is for this reason, that Volume 3, Client-Server Programming and Applications,
which Doug has authored with David L. Stevens, is particularly relevant to the Internet
today. It teaches us how to architect and build client-server applications, and — more
importantly — how to understand what trade-offs are involved with each design deci-
sion.

My hope is that you. the reader, can benefit from Dr. Comer’s wisdom as much as
your humble predecessors.

Marshall T. Rose

Theorist, Implementor, and Agent Provocateur
Petaluma, California

June, 2000

Preface

The Linux operating system is soaring in popularity, and especially important in
the networking community as the system for many servers. This new version of
Volume 3, which uses Linux, is aimed at programmers who want to understand how to
create networking applications. Broadly speaking, it examines the question, ‘‘How does
application software use TCP/IP protocols to communicate across an internet?”’ The
text focuses on the client-server paradigm, and examines algorithms for both the client
and server components of a distributed program. It shows an implementation that illus-
trates each design, and discusses techniques including application-level gateways and
tunneling. In addition, it reviews several standard application protocols, and uses them
to illustrate the algorithms and implementation techniques.

Although this volume can be read and used alone, it forms part of a larger picture
completed by two other volumes in the series. Volume I considers the question ‘*What
is a TCP/IP internet?”” Volume 2 examines the question, ‘‘How does TCP/IP software
work?”’ 1t presents more details, examines working code, and explores greater depth
than the first volume. Thus, although a programmer can learn to create network appli-
cations from Volume 3 alone, the other volumes can be used to provide a better under-
standing of the underlying technologies.

This version of Volume 3 includes the latest technologies. For example, a chapter
explains how a Linux program can use the POSIX thread facilities to create a con-
current server. The chapter on NFS discusses version 3, the version that is about to em-
erge in the Linux community. In addition, sections have been included to explain con-
cepts behind programs like slirp that provide Internet access over a dialup telephone
connection without requiring each computer to have a unique IP address.

Two chapters that stand out as especially timely concentrate on streaming and the
associated technologies used to send audio and video across the Internet. Chapter 28
describes fundamental concepts such as the Real-time Transport Protocol (RTP), encod-
ing, and jitter buffers. Chapter 29 shows an implementation of RTP that is used to re-
ceive and play MP3 audio.

The code for all examples in the text is available online. To access a copy via the
Web, look for Volume 3 in the list of networking books at location:

http://www .cs.purdue.edu/homes/comer/netbooks.html

To access the code via FTP, use location:

ftp://ftp.cs.purdue.edu/pub/Xinu/TCPIP-vol3.linux.dist.tar.Z

The text is organized as follows. Beginning chapters introduce the client-server
paradigm and the socket interface that application programs use to access TCP/IP proto-
col software. They also describe concurrent processes and the operating system func-
tions used to create them. Chapters that follow the introductory material discuss client
and server designs.

The text explains that the myriad of possible designs are not random. Instead, they
follow a pattern that can be understood by considering the choice of concurrency and
transport. For example, one chapter discusses a nonconcurrent server design that uses
connection-oriented transport (e.g., TCP), while another discusses a similar design that
uses connectionless transport (e.g., UDP).

We describe how each design fits into the space of possible implementations, but
do not try to develop an abstract ‘‘theory”’ of client-server interactions. Instead, we em-
phasize practical design principles and techniques that are important to programmers.
Each technique bas advantages in some circumstances, and each has been used in work-
ing software. We believe that understanding the conceptual ties among the designs will
help the reader appreciate the strengths and weaknesses of each approach, and will
make it easier to choose among them.

The text contains example programs that show how each design operates in prac-
tice. Most of the examples implement standard TCP/IP application protocols. In each
case, we tried to select an application protocol that would convey a single design idea
without being too complex to understand. Thus, while few of the example programs are
exciting, they each illustrate one important concept. This version of Volume 3 uses the
Linux socket mechanism (i.e., socket API) in all programming examples; two other ver-
sions of the text contain many of the same examples using Microsoft’s Windows Sock-
ets interface and AT&T’s TLI interface.

Later chapters focus on middleware. They discuss the remote procedure call con-
cept and describe how it can be used to construct distributed programs. The chapters
relate the remote procedure call technique to the client-server model, and show how
software can be used to generate client and server programs from a remote procedure
call description. The chapters on TELNET show how small details dominate a produc-
tion program and how complex the code can become for even a simple, character-
oriented protocol. The section ends with the two chapters on streaming transport
described earlier.

Much of the text concentrates on concurrent processing. Many of the concepts
described may seem familiar to students who have written concurrent programs because
they apply to all concurrent programs, not only network applications. Students who
have not written concurrent programs may find the concepts difficult.

.24 .

The text is suitable for a single semester undergraduate course on ‘‘socket pro-
gramming’’ or a beginning graduate-level course on distributed computing. Because the
text concentrates on how to use an internet rather than on how it works, students need
little background in networking to understand the material. No particular concept is too
difficult for an undergraduate course as long as the instructor proceeds at a suitable
pace. A basic course in operating systems concepts or experience with concurrent pro-
gramming may provide the best background.

Students will not appreciate the material until they use it first hand. Thus, any
course should have programming exercises that force the students to apply the ideas to
practical programs. Undergraduates can learn the basics by repeating the designs on
other application protocols. Graduate students should build more complex distributed
programs that emphasize some of the subtle techniques (e.g., the concurrency manage-
ment techniques in Chapter /6 and the interconnection techniques in Chapters /8 and
19).

We thank many people for their help. Members of the Internet Research Group at
Purdue contributed technical information and suggestions to the original text. Michael
Evangelista proofread the text and wrote the RTP code. Gustavo Rodriguez-Rivera read
several chapters, ran experiments to test details, and edited Appendix 1. Dennis Brylow
commented on several chapters. Christine Comer edited the entire text and improved
both wording and consistency.

Douglas E. Comer
David L. Stevens

July, 2000

.25 -

About The Authors

Dr. Douglas Comer is an internationally recognized expert on TCP/IP pro-
tocols and the Internet. One of the researchers who contributed to the Internet
as it was being formed in the late 1970s and 1980s, he was a member of the In-
ternet Architecture Board, the group responsible for guiding the Internet’s
development. He was also chairman of the CSNET technical committee and a
member of the CSNET executive committee.

Comer consults for companies on the design and implementation of net-
works, and gives professional seminars on TCP/IP and internetworking to both
technical and nontechnical audiences around the world. His operating system,
Xinu, and implementation of TCP/IP protocols are documented in his books,
and used in commercial products.

Comer is a professor of computer science at Purdue University, where he
teaches courses and does research on computer networking, internetworking,
and operating systems. In addition to writing a series of best-selling technical
books, he serves as the North American editor of the journal Software — Prac-
tice and Experience. Comer is a Fellow of the ACM.

Additional information can be found at:

www.cs.purdue.edu/people/comer

David Stevens received his BS (1985) and MS (1993) in Computer Science
from Purdue University. He has been a UNIX systems programmer working
primarily on BSD UNIX kernels since 1983. He has done implementations of
most of the Internet Protocol Suite and co-authored several Computer Science
textbooks with Dr. Comer. His areas of professional interest are operating sys-
tems, computer networking, and large-scale software systems design.

In recent years, Stevens has worked in the area of scalable networking on
high-performance multiprocessor systems for Sequent Computer Systems and
the IBM Corporation. He is a member of the ACM and IEEE.

What Others Have Said About The Linux Version
Of Internetworking With TCP/IP Volume 3

“This is by far the best book on the topic | have ever read. Thank you for
making sockets easy to understand.”
Dustin Boswell
Caltech

**An excellent book for learning TCP/IP client-server programming. This book
explains important concepts clearly and provides working example code; the
combination produces an extremely effective way to learn the subject.”’

John Lin
Bell Labs

“Your book has been extremely valuable to me — thank you very much
indeed.””
Jacoby Thwaites

‘I enjoy the clarity and depth!™’
Rob Moloney

“*Volume 3, Client-Server Programming and Applications, which Doug has au-
thored with David L. Stevens, is particularly relevant to the Internet today. It
teaches us how to architect and build client-server applications, and — more
importantly — how to understand what trade-offs are involved with each
design decision.””

Marshall Rose

Contents

Foreword 22
Preface 23
Chapter 1 Introduction And Overview 1

1.1 Internet Applications Using TCP/IP 1

1.2 Designing Applications For A Distributed Environment 1

1.3 Standard And Nonstandard Application Protocols 2

1.4 An Example Of Standard Application Protocol Use 2

1.5 An Example TELNET Connection 3

1.6 Using TELNET To Access An Alternative Service 4

1.7 Application Protocols And Software Flexibility 5

1.8 Viewing Services From The Provider’s Perspective 6

1.9 The Remainder Of This Text 6

1.10 Summary 7

Chapter 2 The Client Server Model And Software Design

2.1
2.2
2.3

Introduction 9

Motivation 10

Terminology And Concepts 10

2.3.1 Clients And Servers 11

232 Privilege And Complexiry 11

233 Standard Vs. Nonstandard Client Software 12
234 Parameterization Of Clients 12

2.3.5 Connectionless Vs. Connection-Oriented Servers 13
236 Stateless Vs. Stateful Servers 14

2.4

2.3.7 A Stateless File Server Example 15
2.3.8 A Stateful File Server Example 15
2.3.9 Identifving A Client 16

2.3.10 Statelessness Is A Protocol Issue 18
2.3.11 Servers As Clients 19

Summary 20

Chapter 3 Concurrent Processing In Client-Server Software

3.1
3.2
3.3
34

3.5

3.6
3.7
3.8
3.9

Introduction 23

Concurrency In Networks 23

Concurrency In Servers 25

Terminology And Concepts 26

3.4.1 The Process Concept 26

3.4.2 Sharing Of Local And Global Variables 27
3.4.3 Procedure Calls 28

An Example Of Concurrent Process Creation 29
3.5.1 A Sequential C Example 29

3.5.2 A Concurrent Version 30

3.5.3 Timeslicing 31

3.5.4 Singly-Threaded Process Assumption 32
3.5.5 Making Processes Diverge 33

Executing New Code 34

Context Switching And Protocol Sofiware Design 34
Concurrency And Asynchronous I/0 35

Summary 36

Chapter 4 Application Interface To Protocols

4.1
4.2

4.3
44
45
4.6
4.7
4.8
4.9

Introduction 39

Loosely Specified Protocol Software Interface 39

4.2.1 Advantages And Disadvantages 40

Interface Functionality 40

Conceptual Interface Specification 41

System Calls 42

Two Basic Approaches To Network Communication 43
The Basic I/O Functions Available In Linux 43

Using Linux I/0 With TCP/IP 45

Summary 45

23

39

Chapter 5 The Socket API 47

5.1 Introduction 47
5.2 Berkeley Sockets 47
5.3 Specifying A Protocol Interface 48
5.4 The Socket Abstraction 49
5.4.1 Socket Descriptors And File Descriptors 49
54.2 System Data Structures For Sockets 50
54.3 Making A Socket Active Or Passive 51
5.5 Specifying An Endpoint Address 52
5.6 A Generic Address Structure 52
5.7 Major System Calls In The Socket APl 54
5.7.1 The Socket Call 54
5.7.2 The Connect Call 54
573 The Send Call 55
5.74 The Recv Call 55
5.7.5 The Close Call 55
5.7.6 The Bind Call 56
577 The Listen Call 56
5.7.8 The Accept Call 56
5.7.9 Using Read And Write With Sockets 56
5.7.10 Summary Of Socket Calls 57
5.8 Utility Routines For Integer Conversion 58
5.9 Using Socket Calls In A Program 58
5.10 Symbolic Constants For Socket Call Parameters 59
5.11 Summary 60
Chapter 6 Algorithms And Issues In Client Software Design 63
6.1 Introduction 63
6.2 Learning Algorithms Instead Of Details 63
6.3 Client Architecture 64
6.4 Identifying The Location Of A Server 64
6.5 Parsing An Address Argument 66
6.6 Looking Up A Domain Name 67
6.7 Looking Up A Well-Known Port By Name 68
6.8 Port Numbers And Network Byte Order 68
6.9 Looking Up A Protocol By Name 69
6.10 The TCP Client Algorithm 69
6.11 Allocating A Socker 70
6.12 Choosing A Local Protocol Port Number 71
6.13 A Fundamental Problem In Choosing A Local IP Address 71
6.14 Connecting A TCP Socket To A Server 72

6.15
6.16
6.17

6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25

Communicating With The Server Using TCP 72
Receiving A Response From A TCP Connection 73
Closing A TCP Connection 74

6.17.1 The Need For Partial Close 74
6.17.2 A Partial Close Operation 74
Programiming A UDP Client 75

Connected And Unconnected UDP Sockets 76
Using Connect With UDP 76

Communicating With A Server Using UDP 76
Closing A Socket That Uses UDP 77

Partial Close For UDP 77

A Warning About UDP Unreliability 77
Summary 77

Chapter 7 Example Client Software

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
711
7.12
7.13
7.14
715
7.16
717
718
7.19

Introduction 81

The Importance Of Small Examples 81

Hiding Details 82

An Example Procedure Library For Client Programs 82
Implementation Of ConnectTCP 83

Implementation Of ConnectUDP 84

A Procedure That Forms Connections 85

Using The Example Library 88

The DAYTIME Service 88

Implementation Of A TCP Client For DAYTIME 89
Reading From A TCP Connection 90

The TIME Service 91

Accessing The TIME Service 91

Accurate Times And Network Delays 92

A UDP Client For The TIME Service 92

The ECHO Service 94

A TCP Client For The ECHO Service 94

A UDP Client For The ECHO Service 96

Summary 98

Chapter 8 Algorithms And Issues In Server Software Design

&.1
82
8.3
8.4

Introduction 101

The Conceprual Server Algorithm 101

Concurrent Vs. Iterative Servers 102
Connection-Oriented Vs. Connectionless Access 102

81

101

8.5 Transport Protocol Semantics 103
8.5.1 TCP Semantics 103
8.5.2 UDP Semantics 103
86 Choice Of Transport 104
8.7 Connection-Oriented Servers 104
8.8 Connectionless Servers 105
8.9 Failure, Reliability, And Statelessness 106
8.10 Optimizing Stateless Servers 106
8.11 Four Basic Types Of Servers 109
8.12 Request Processing Time 109
8.13 Irerative Server Algorithms 110
8.14 An lterative, Connection-Oriented Server Algorithm 110
815 Binding To A Well-Known Address Using INADDR_ANY 111
8.16 Placing The Socket In Passive Mode 112
8.17 Accepting Connections And Using Them 112
8.18 An lterative, Connectionless Server Algorithm 112
819 Forming A Reply Address In A Connectionless Server 113
8.20 Concurrent Server Algorithms 114
821 Master And Slaves 114
8.22 A Concurrent, Connectionless Server Algorithm 115
8.23 A Concurrent, Connection-Oriented Server Algorithm 116
8.24 Implementations Of Server Concurrency 117
8.25 Using Separate Programs As Slaves 118
8.26 Apparent Concurrency Using A Single Thread 118
8.27 When To Use Each Server Type 119
8.28 A Summary of Server Types 120
8.29 The Important Problem Of Server Deadlock 121
830 Alternative Implementations 122
831 Summary 122
Chapter 9 Iterative, Connectionless Servers (UDP) 125
9.1 Introduction 125
9.2 Creating A Passive Socker 125
9.3 Process Structure 129
9.4 An Example TIME Server 130
95 Summary 132
Chapter 10 Iterative, Connection-Oriented Servers (TCP) 135
10.1 Introduction 135
10.2 Allocating A Passive TCP Socket 135

10.3
104
10.5
10.6
10.7
10.8

Chapter 11 Concurrent, Connection-Oriented Servers (TCP)

11.1
11.2
11.3
11.4
11.5
11.6
11.7

A Server For The DAYTIME Service 136
Process Structure 136

An Example DAYTIME Server 137

Closing Connections 140

Connection Termination And Server Vulnerability
Summary 141

Introduction 143

ECHO Service 143

Iterative Vs. Concurrent Implementations 144
Process Structure 144

An Example Concurrent ECHO Server 145
Cleaning Up Errant Processes 149

Summary 150

Chapter 12 Using Threads For Concurrency (TCP)

12.1
12.2
12.3
12.4
12,5
12.6
12.7

12.8
12.9
12.10

Introduction 151

Overview Of Linux Threads 151
Advantages Of Threads 152
Disadvantages Of Threads 153
Descriptors, Delay, And Exit 153
Thread Exit 154

Thread Coordination And Synchronization 154
12.7.1 Mutex 154

12.7.2 Semaphore 155

12.7.3 Condition Variable 155

An Example Server Using Threads 156
Monitor And Control 160

Summary 161

Chapter 13 Single-Thread, Concurrent Servers (TCP)

13.1
13.2
13.3
13.4
13.5
13.6

Introduction 163

Data-driven Processing In A Server 163
Data-Driven Processing With A Single Thread 164
Process Structure Of A Single-Thread Server 165
An Example Single-Thread ECHO Server 166
Summary 168

140

143

151

163

