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of the Second International Conference on Numerical Methods in Fluid
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numerical techniques, two to viscous flow problems, two to high speed
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the USSR, France, Germany, England, Holland, Canada and Australia.

The Conference was organized within a one year period, following the
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financial support was provided through a grant from the U.S. Office of
Naval Research and the U.S. Air Force Office of Scientific Research.

Many services of the Berkeley campus of the University were made available
to us, including the use of the Physical Sciences Lecture Hall for all
Conference sessions, and housing in the Halls of Residence. The Northrop
Corporation kindly provided refreshments at the opening reception of

the Conference.

I wish to thank the many students and colleagues who worked to make the
Conference a success. Special mention should be made of Mrs. Arlene
Martin, who did all the secretarial work, Mr. William F. Ballhaus, Jr.,
a graduate student, who supervised most of the arrangements, and

Drs. Mark Wilkins and Robert L. Street who served on the program
committee.

Finally I am indebted to Dr. W. Beiglbdck, Editor of Lecture Notes in

Physics, and to Dr. Klaus Peters of Springer-Verlag, for arranging the
early publication of these Proceedings in this series.
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ON THE GROUP CLASSIFICATION OF DIFFERENCE SCHEMES FOR SYSTEMS OF EQUATIONS
IN GAS DYNAMICS C.

N. N. Yanenko and Y. I. Shokin

Computing Center, Academy of Sciences, USSR
Siberian Branch, Novosibirsk

INTRODUCTION

The subject of this paper is the group classification of difference schemes
approximating the equations of gas dynamics. It is known that the equations of
gas dynamics are invariant with respect to a certain group of point transforma-
tions in the space of independent and dependent variables. This invariance
follows from the invariance of the conservation laws, which are the basis for
the equations of gas dynamics. Any given difference scheme is utilized in
connection with some particular grid which in itself upsets the invariance of
a computational algorithm. This lack of invariance can be demonstrated, for
example, in the calculation of critical features of the flow (shock waves,
contact surfaces, weak discontinuities), which move with various inclinations
to the grid lines. The introduction of the difference scheme makes a group
analysis difficult because difference operators possess group properties different
from differential operators. Consequently, it appeared desirable to carry out a
group classification of difference schemes on the basis of their first differential
approximation. An explanation of the first differential approximation was given
in References [1] - [3] and proved fruitful in examining properties of stability
and especially dissipation of difference schemes. Inasmuch as the first differen-
tial approximation is in fact a differential equation with coefficients containing
the parameters of the scheme, it occupies an intermediate position between the
basic equations of gas dynamics and the difference scheme approximating them:
In its hyperbolic part it preserves information concerning the basic equations
while the difference scheme is reflected in the parabolic part. In consequence the
obvious question is, to what extent does the first differential approximation pre-
serve the group characteristics of the equations of gas dynamics. In this connec-
tion, all schemes can be divided into two classes: those which preserve the group
characteristics and those which do not. In this paper we formulate those conditions
under which a parabolic system of equations of the first differential approximation
admits all groups of transformations [4], allowed by the basie system of gas dynamic
equations. Systems of equations in one space variable are studied in both Eulerian
and Lagrangian coordinates; in the case of two space dimensions only the Eulerian
point of view is taken. Furthermore, it is noted in which systems of Lagrangian
equations of the first differential approximation the law of conservation of mass
is observed and where it is violated. Stability of the classes of schemes con-
structed is tested by the method of the first differential approximation.

1. THE CASE OF ONE ‘SPACE DIMENSION

1. Let us consider the system of equations of gas dynamics in Eulerian
coordinates in the case of one space variable.

= 1.1
W £ s (1.1)
/ 2

in which ou -p - pu ,
1
w = p . f = = pu 3 E = €+ Fu X
pE - puE - “p

u is the gas velocity, p 1is the pressure, p is density, € 1is the specific
internal energy. The equation of state of the gas has the form

e = (p,p) .



The system of equations (1) is approximated by the following difference scheme:

A A
& wi(x) A, + A aE+2)t_ g By -1
o 1 =k £ 247 h 2 h n s
T = 2h L h v,

(1.2)

in which t = nT, T is the step in time t, h is the length step along the
T[aXiT[ wl(x) = w(x,nt), Q= IT Qijlli is a matrix as yet unknown, for which
Q = 0(1),

Aoy coet 1 B im BT , . 26llili e T 3resilo g by = E-T_

l ’

T, 1is the displacement operator in t, Ty is the displacement operator in x,
E is the identity operator, T 1 = Tl‘l. The difference scheme (2) has at least
first order accuracy.

The hyperbolic and parabolic forms of the first differential approximation of
the difference scheme (1.2) have, respectively, the forms:

€
P Wiy, NG el e (e o3, $2.9
X, ™ fx+(wa)x 3 (1.4)
in which
: 3
T 2 df
C="Q-34 = ”"ijll by thin Wss
. 2

Uy =7 911 - % (3u2 + 6 + zn - 3u®z) »

= Q..+ I-u[2u2 - 28 - 3u22 + 3Ez + zn]
Hi2 19 2 ’

L Ay belindie, o oY Wef. oo guck
H13 13 o ? aodipd 9215552 ’
“22 = 922 + —215-(u2 -0 - uzz + Ez) .

T.

Moz = B3 -5z

=g CraE + n s w2 U T S ED
Byj = ¥g = n 2 ’
Hyp = g + 3 [20° + E2)E + 1) - (u? + E)6 - 06 - v2(2u? - Eye] ,
Mgy * ﬂ33—%u2(1+22)—-;—z(E+n) ,

P

z = .p_e » n '% » e - ] pp ’

Qij = Qij(t, Xy Wy Wiy Wy ons )

The system of equations (1l.4) can be written in the form



wt - f + NX H (1 5)
in which
u 3
N = N = C wx = C wx s w =0 N C = |l 6ij |Ii ’
P
Ny = S uet 8o +6, ,

Spr = Pl * Uy ,
5

k2 = UV tWot (E+pEdu, ,
Sps = P B, Wy .

Expression of the functions w,f in terms of the iunction W leads to the
result that the system of equations (1.5) is equivalent to the system

1 i § u
F1 u, +u u + o Py - B-le + E—Nzx = 0 .
F2 = P +up +pu - N2x = 0 s (1.6)
o 2 u 1 _
F3 = P +u P + a u, +: b NZx + ) ep le - G N3x = 0 s
in which

2 1 2

az ) P-p € Jod, E+p ep -Fu
& eP ' p eP ‘

2. The system of equations (1.1) admits a space of operators with the
basis [4]:

- 9 _
'l T TR L T

(1.7

which represent, respectively, the following finite transformations preserving
the system of equations (1.1):

1) translation in time,

2) translation in a space coordinate,
3) Galilean transformation,

4) Similarity transformation.

The requirement that the system of equations (1.4) or the equivalent system
(1.6) admit a space of operators with the basis (1.7) leads to certain restrictions
on the choice of matrix Q.

The system of equations (1.6) admits a space of operators with the basis £1:7)
; 5 and only if, the following equations are satisfied (see [4]):

L, B = 0 s
F,=0,F,=0,F,=0
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in which ia is the extended operator obtained by extending the operator La'

In the given case

Ly = 44 ot , Ly =L, = = ,
~ 9 9 9 ) E)
Ly = ta—ta—-u = _p 2 o, 3
3 9x - du pe But X Bpt x Bpt ’
~ 3 d 5 3
Ly R T RS e o . -
3 9 9
T I o .
x Bux Px Bpx Py apx

Lemma, If in the difference scheme (1.2) the elements of the matrix Q are
independent of t and x, the system of equations (1.6) is invariant with
respect to transformations consisting of translation in either the time or
space coordinates.

Indeed, in satisfying the conditions of the lemma, it follows that

o 1 93 u 9 _

L%y T Nkt N =0

~ 1 9 u. 9

L% "o x Mxto ax N 0

~ ) ~ 9 N =0

LiFp = -3¢ Ny = 0 , LpFy = -3x 2x ’
9 u 9 1 9 _

LiFy = b 3t Nox PE, ot Nix - PE, N3 =0 >

~ - 3 u 9 1 3

LF, "'a?“zx*pep H”ﬁx‘pep =Mx =0

inasmuch as the independence of the elements of the matrix Q on x and ¢t
implies also independence of Gij on x,t, thus proving the lemma.

Theorem 1.1. If the conditions of the lemma are satisfied, and if in
addition, '

3 3 o . _
Wnij = 0 . a—pt-ﬂij = 0 s Eﬂij 0 (41,3 1;235Y217 (148)
2N =N Ly =0 2N, =N (1.9)
du 1x 2x 2 du 2x ’ du " 3x Ix 2 ‘
(42 2e0y glaeo g ablalyyt. O _eigad sdgyriaty yrss (1.10)
X Bux x apx Py apx ox ox e » :

the system of equations (1.6) of the first differential approximation of the
difference scheme (1.2) admits a space of operators with the basis (1.7).

Proof. Under our assumptions it follows from the lemma that

LE =0 , LF =0 k = 1,2,3) :



A further examination of the operator 1~..3 shows that

i . - -17 uy 1 1 g
LyFy ug tug =g LN S LNy F TNy = -5 Y -H*
uy . -2l - u 2
¥ P L3NZx o) ( du le NZx) T p Odu N2x R0 y
21 redi-, potéapics Bigusmetomnplamyeadno0
32 X X 372x du 2x :
L - i L - e 8y o -
Lg¥s P+ Pyt b LgNy - o Moy e Ly Ny + 5 Nix
P P P
1 u 8 - i ] "
pep L3N3x pE ( du Nix N2x) * pE (le du N3x) o
Let
9 9 )
le Yx 3u * Py 3p * Py p ’
X X x
Then
i 9 9 _ 3 9 e
L, = t3ct*3x "t 3u,  Ptdp, ~ Ptip, L,
L4F2 = TP T Upy T Py T Lle2x - N2x * L4N2x = & >
T - i _1z uy -
L4F1 Wy = Wy T Px "9 Llole * o] L4N2x
1 u 13
- 3 Nl + N2 + a L4 le o leNZx 0 >
T - u - 1 - »
L4F3 : b(an £ LANZx) - pep (LAI‘,le le) * pep (L4N3x N3x) 0

"and the theorem is proved.

The conditions  (3/3u)N = 0 imply that N does not depend explicitly
on the function u. Then Eqs. (1.9) can be written §n the form:

_3 = = = l 2 N
auNZZ = 0 » le uN2x+Rl i N3x 2 2 2x+uRl+R2, S
)
3% Ry = 0, FgBp =0 . (1.11)
if : ’
T T '
921 = §21 + 3 u(2-z) - u(?f23 -3 z) 3
T T 2 1 2 T
Qy, = 9y, - ulfly; - u@; -3 8]} =~ gule-m) ~5 v @y -22 > 1.12)
0,3 = Ty >
in which
5%5 = 0 (k = 1,2,3) s (1.13)



then

)
53'§2x =9

Thus Theorem 1.1 is still valid if, in its formulation, conditions (1.9) are re-
placed by the conditions (1.11) to (1.13)..

3. Let it be required that, in the first differential approximation of the
difference scheme (1.2), the law of conservation of mass is satisfied, that is,
that equation

N2 = 0

holds, and consequently,

Q,, = 7 u(-2) "

922 = -'25 6 - ez - u® ¥ uzz) s (1.14)
T

023 = ? z .

Then the system of equations (1..6) assumes the form:

1 1
Fl = ut+uux+—p-px-3le 0 .
F2 = P, + up_ + pux = 0 s x.15)
J 2 u 1
F3 P, + up_ + a ux,+ BE; le = BE; N3x 0

Theorem 1.2. If the conditions of the lemma, Eqs. (1.8), (1.10), (1.14), are
satisfied, and if in addition,

3 3
FoMe =0, N o= (WN) +R-u N , FR=0 , (1.16)

then the system of equations (1.15) of the first differential approximation to
difference scheme (1.2) admits a space of operators with the basis (1.7) and, in
this approximation, the law of conservation of mass is satisfied.

Indeed, it follows from (1.14) that

62k = 0 (k = 1,2,3) s
That is, Nj = 0, and hence, in the first differential approximation the law of
conservation of mass is satisfied. 1In addition the validity of Theorem 1.2
follows on the basis of Theorem 1.1, since in this case the condition (1.9) assumes
the form

9 9 _
Bu le - g > Ju N3x a le L
that is,
9 -
N3x = u le + R = (u Nl)x + R - u Nl - ™ R=0 E (1.17)

The fact that N is independent of the function u implies that its

coefficients & (k%xl,2,3) do not depend on the function u. Setting

ik



