| ecture Notes In

Computer Science

et i e o Ee N s e R —h

e o ™

T e N T . R Ty o e 1o el A el oy St whl N W O R e I G e e

Edited by G. Goos and J. Hartmanis

132

Data Base |
Design Techniques I

' Requirements and Logical Structures

Proceedings, New York, May 1978

Edited by S.B. Yao, S.B. Navathe, i
J.L. Weldon, and T.L. Kunii v

Springer-Verlag
Berlin Heidelberg NewYork

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

132

Data Base
Design Techniques |

Requirements and Logical Structures
NYU Symposium, New York, May 1978

Edited by S.B. Yao, S.B. Navathe,
J.L. Weldon, and T.L. Kunii

Springer-Verlag
Berlin Heidelberg New York 1982

Editorial Board
W. Brauer P. Brinch Hansen D. Gries C. Moler G. Seegmiiller
J. Stoer N. Wirth

Editors

S.B.Yao

University of Maryland

College of Business & Management
and Dept. of Computer Science
College Park, MD 20742, USA

S.B. Navathe

Computer & Information Sciences Dept. |
University of Florida

Gainsville, FL 32611, USA |

J.L. Weldon

New York University

Graduate School of Business Administration
90 Trinity Place, New York, NY 10006, USA

T.L. Kunii

Dept. of Information Science
University of Tokyo

Hongo, Tokyo 113, Japan

CR Subject Classifications (1979): 3.72, 3.73, 3.74, 4.33

ISBN 3-540-11214-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-11214-6 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or-similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1982

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

PREFACE

The design of data base organizations is one of the most important
steps in the development of a computerized information system. Size
and complexity combine to make this task disproportionately time con-
suming and expensive. In the past, database design activities consisted
of trial and error approaches using ad hoc techniques: systematic
method was lacking. In the past several years, practitioners have been
working on database design methodologies. Independently, researchers
have begun to develop theories and models for data base design. It
is our objective to bring together these different approaches into
a book to facilitate the exchange of ideas.

Two symposia were held to compare and summarize various newly
developed approaches to data base design.
The NYU Symposium on Data Base Design, organized by S. B. Yao
‘(Chairman), S. Navathe, and J.L. Weldon; New York, May 1978.
The Symposium on Data Base Engineering, organized by T.L. Kuniij
Tokyo, Nevember, 1979.

The organizers of both symposia have edited proceedings that
contained many excellent papers covering a wide range of data base
design models and methods. In order to further disseminate these, the
present book (which contains certain revised papers from the proceedings
and séveral new papers) was compiled. The book is divided into two
volumes. Volume 1 contains two parts. The first presents a general
framework for considering the problem of data base design and classifies
data base design techniques into two major categories: logical design
and physical design. Logical design techniques are introduced in
the second part. Volume 2 contains the third and fourth parts of
the book. Physical design techniques are introduced in the third part.
The last part gives examples of data base applications in several
important fields. Both practitioners and researchers in the field of
data base design should find this book useful. Although not a text-
book, it might also be used in an advanced seminar on data base
systems.

The symposia and this book were made possible through the efforts
of many people. We would like to acknowledge NYU and IBM Japan for
sponsoring the symposia.

S. B. Yao T, L. Kunif

University of Maryland The University of Tokyo

April 3, 1981

PART 1.

PART 2.

CONTENTS

DATA BASE DESIGN AND REQUIREMENT ENGINEERING

An Integrated Approach to Database Design*
S.B. Yao, S.B. Navathe and J-L. Weldon

LDDM - A Structured Logical Database Design
Methodology

B.K. Kahn

The Design of an Integrated Data Dictionary
Directory System

R. Hotaka

Tools For The Automation of Database Design+
R. Gerritsen

LOGICAL DATA BASE DESIGN

Applications of The Entity-Relationship Mode1’
P. P-S. Chen

Principles of Database Conceptual Design*
J.M. Smith and D.C.P. Smith

Practicalities in Applyving a Formal Methodology
to Data Analysis

I.R. Palmer

Problems of Relational Database Design++

Y. Kambayashi, K. Tanaka and S. Yajima

A Technique for Automated Logical Database Designt
G.U. Hubbard

t Presented in NYU Symposium on Data Base Design,
New York, 1978.

tt Presented in IBM Symposium on Database Engineering,
Tokyo, 1979.

31

56

72

87

147

172

219

An Integrated Approach to Database Design

+
S. B. Yao
Purdue University

++
Shamkant B. Navathe and Jay-Louise Weldon
New York University

This paper provides an integrated approach for research related
to the problem of database design. The process of database design is
classified into five phases: requirements analysis, view modeling,
view integration, view restructuring, and schema analysis and mapping.
The input, processing steps, and output for each phase are described.
The problems associated with each phase are pointed out. Existing
approaches to database design are reviewed and related to these five
phases. The significance of this integrated approach for the develop-
ment of computer-aided methodologies for database design is discussed.

1l. INTRODUCTION

At the current state-of-the-art, the methods used in the design
of database applications are essentially trail-and-error, supported by
neither a scientific foundation nor an engineering discipline. The ad
hoc approach to design frequently leads to inflexible solutions that
do not meet the prescribed requirements. Costly remedial measures
often produce more delay in operation without a tangible improvement.
Much of the existing information on system design is presented in the
form of individual analyses. These analyses ‘do provide valuable
insight, but they can hardly be adequate substitutes for a systematic
design discipline.

It is generally accepted that there are two levels in the design
of a database a) the logical design, defining and combining the views
of many applications into a centrally controlled and maintained 1logi-
cal databases, with provisions for data sharing and security; and b)

¥ Presently at University of Maryland.
++Presently at University of Florida.

the physical design, including all the implementational details and
considerations of a particular database system.

In this paper, we will address mainly the design issues which
apply at the logical design level. Since realistic databases involve
thousands of data elements, and the evaluation of an enormous amount
of structured information is implied (e.g. see Raver and Hubbard
[A5]), it is desirable to develop computer aided tools to aid the
design. In what follows, a conceptual framework is presented within
which current research in logical database design is reviewed. It is
also suggested as to how these seemingly unrelated approaches may be
integrated into a computer aided design system.

2. THE DATABASE DESIGN PROCESS

The problem of database design is rich; it ranges from system-
independent analysis to system-dependent optimization. Existing
research tends to concentrate on only a few aspects of the design pro-
cess. Consequently, each approach has its own view of the design pro-
cess. It is desirable to define a general design process in order to
compare and integrate existing approaches.

The process of database design can be divided into five general
steps:

1) Requirement Analysis. The problem or environment in the real
world must be analyzed to make the necessary components of the
database explicit and to elicit both the data and processing
needs of all potential database users.

2) View Modeling. Using the results of step 1 as input, abstract
representations must be developed that correspond with each
user's view of the real world. This step both verifies the pre-
vious step and lays a basis for the next.

3) View Integration. The several (and perhaps conflicting) user
views must be integrated into one global or community view of the

database. This global view must continue to support all wuser
views.

4) View Restructuring. If the target system is known, a given com-
munity view can be mapped into alternate logical structures in
the particular system. This step takes as input the canonical
representation of a community view and restructures it into mul-
tiple structures in the target system.

5) Schema Analysis and Mapping. This step arrives at the storage
level representation of data in the given target system. An
analysis of physical implementation alternatives is performed and
optimal storage structures are chosen.

If a target database management system has not been selected,
steps 4 and 5 must be repeated for each candidate target system.

It is important to note the following:

1) It is observed that the requirement analysis provides input to
all other design steps, since the information extracted from
applications is relevant to all design stages.

2) Each design step produces not a unique solution but a set of
solutions associated with measures which represent various pro-
perties of the particular solution.

3) The designer should interact with the design process to select an
appropriate solution as the input to the next design step. A
selection criterion must be stated.

4) Since the design requirements collected by the requirement
analysis may be incomplete and inconsistent, the designer must be
consulted to resolve ambiguities.

5) The design is usually not a single-pass process. Various condi-
tions discovered by the designer may force a re-design and
iterate to an earlier design step.

Although there exists a large amount of work in the 1literature
which relates to database design, there is no existing approach which
is comprehensive enough to address all the steps of the design process
described above. In the following sections we will specify the
inputs, processes and outputs of each step. Existing design methods
will be discussed under the above framework. Problems yet to be
addressed will be pointed out.

3. REQUIREMENT ANALYSIS

Requirement analysis provides initial input to the database
design process. This step seeks to identify each user (application)
of the database and, for each, analyzes the wuser's requirements
regarding the content and the use of the database. 1Ideally this step
should provide input which is both an accurate representation of the
users' views and also a complete specification of the required data-
base (i.e. all succeeding steps will be able to draw the data they
require from the requirement analysis output). Further, the output of
this stage should be in a form which is both usable by the succeeding
steps and also amenable to review and verification by the users of the
database. Thus, to be effective, a methodology for requirement
analysis should include:

- a specification of the data to reside in the database

- suggested techniques for data collection (e.g., analysis of oral or
narrative descriptions, document review, accumulation of performance
statistics).

-a language or format for data collection and review

—-an output specification which is compatible with the input to one or
more view modeling techniques.

A specification of necessary data has been proposed by Kahn [R4]
which classifies the information structure and the process structure.
Some typical design inputs following this classification are shown in
Figure 1. A major shortcoming of existing approaches to database
design has been that they consider either the information structure

oriented input or the process structure oriented input, but fail to
incorporate both.

Requirement analysis for database design may be considered a spe-
cial case of the general problem of gathering and specifying require-
ments for information systems. Little work has been reported in the
literature which focuses on the requirement analysis for database
design per se. However, there is a large body of literature devoted
to the more general problem as evidenced by a special issue of IEEE
Transactions in Software Engineering [R3]. The work in this area con-
sists of development of high level languages to specify, store and
retrieve the description of an information system being developed.
Facilities for analysis, report generation, cross referencing, and

A. The information-structure-oriented design input:

-for each entity: entity name cardinality;

-for each attribute: attribute name, repeating factor,
length of data value, value set size, probability of
existence;

-for each intra-entity relationship: relationship name,
attributes related, cardinality of multi-valued depen-
dency; -
-for each inter-entity relationship: relationship name,
relationship type (aggregation/generalization), enti-
ties related, cardinality ratio, probability of
existence, whether used for identification of
instances. L

B. The process-structure-oriented design input:

-for each process: frequency of occurrence, priority
and weight, precedence, volume of data processed, data
items required;

-for each access operation: type of operation, mode of
access (random/sequential), hit ratio, frequency of
occurrence, frequency of data items accessed, frequency
of intra-entity relationship path accessed, frequency
of inter-entity relationship path accessed.

/

Figure 1. Database Design Input parameters.

selective display are present in each system.

The PSL/PSA technique developed by the University of Michigan
ISDOS project [R6] uses the Problem Statement Language to describe the
following attributes of a system: input/output flows, structure
between system components, size and volume, system dynamics. The data
structure aspect of system description includes all the relationships
which exist among data used and/or manipulated by the system as seen
by the users of the system. The ELEMENT, ENTITY, ATTRIBUTE, GROUP,

SET are some of the PSL statement-types used to describe a data struc-
ture.

The data derivation aspect of the system description specifies
which data object are involved in particular PROCESSES in the system.
It is concerned with what information is used, updated and/or derived,
how this is done and by which processes. The PSL/PSA system has a
command language facility which a designer wuses to retrieve and
display parts of the database containing the system description. A
number of reference, summary and analysis reports can be produced. 1If

PSL/PSA were to be used for view modeling/integration, each view would
either have to be described in PSL syntax or extracted from the cen-
tral PSL/PSA database.

The CASCADE system at University of Trondheim, Norway is another
System which has the objective of developing formal tools of informa-
tion system analysis and design. The system specification and system
presentation modules in CASCADE store a description of the information
system. The information objects are related to other objects, vari-
ables, and elements. Processing is represented in the form of a tree
structure. The coded representations of information and process
structures would constitute an input to logical database design [R5].

Hammer et al have developed a very high level language called BDL
which a designer could use to develop transaction processing programs
for business applications [R2]. The basic data structure of this
language is a document, or form, composed of fields of data items or
data groups. Homogeneous collections of documents may be defined as
files. BDL addresses the implementation of individual applications.
As such the only provision for data sharing is redundancy, i.e. one
document flowing through more than one application.

The design methodology of Bubenko et al [R1] starts with a
knowledge of the queries which will be used against the database (all
the queries which will ever be used, not just a minimal set which must
be supported), and derives two schemas: a response-oriented schema and
a storage-oriented schema. The storage-oriented schema corresponds to
what might be called the normalized database design, as it stores each
item of information once and does not have redundant set-types or
links. The response-oriented schema is designed so that each query
will have to access as few record types as possible when ordering and
other constraints of the design procedure are taken into account. The
design procedure then derives the final design as a compromise between
the two schema alternatives.

The design system implemented by Yao et al [A8,A9,A10] wuses a
Functional Data Model (FDM) to capture the information requirements
and a Transactions Specification Language to - capture the processing
requirements. The system provides interactive facilities to edit,
verify, and analyze the design requirements. Tools are also provided
to perform many analyses in the view modeling and integration stages.

The existing approaches to view modeling or to logical database
design in general have not addressed the collection and analysis of
information and processing requirements in detail. For example, IBM's
DBDA [A5] is initiated by a list of data items and inter-item rela-
tionships obtained from input/output documents while Smith & Smith
assume that the designer can name and assign attributes to the objects
in the abstraction structure [M6]. CINCOM Systems, Inc. has a
requirements analysis plan that utilizes tabular checklists to collect
information on both entities and processes [D4].

An integrated approach to database design requires that the
requirement analysis step provide data which is both accurate and com-
plete. 1In other words, the user views should not be misrepresented by
inadequate document sampling or incorrect formulation of required
processes. However, redundant relationships and even inconsistent
data groupings may not be eliminated at this step. Implicit decisions
on such issues may freeze the design too early and result in artifi-
cial design constraints. The view integration and schema analysis
steps will address these questions explicitly and the designer can
then make a better decision. The level and nature of this tolerable
uncertainty in requirement analysis has yet to be determined.

As mentioned in the overview of the design process, requirement
analysis provides input to every step of the process. The designer
and the users interact to develop the specification and refine it as
the design progresses. Thus the full extent of requirement analysis
will be determined by the input requirements of the succeeding steps.

4. VIEW MODELING

The objective of the view modeling step 1is to represent each
user's view of the database using a common modeling technique. Once
the views are represented, the designer can compare and integrate
them. Figure 2 shows a schematic for the View Modeling step. Inputs
to this step consist of information and processing requirements as
determined by the requirement analysis step, as well as semantic
information about the application which is known by the wuser or
designer of the data base. The View Modeling process includes a
modeling process and a verification process. In the modeling process

inputs are analyzed and formal representations of user views are

1 1]
] |]
Designer | \ Users | i Requirements |
1 | ! ¢ 'analysis:’ !
T s i i
]]] 1
: : ! .
i ! Informatioin Processing
| Semantics Requirements Requirements
i ' i |
] 1] 1
: . : :
]] !
| | } €% 8 amemin s |
| > Modeling S e i s i
i ' : ! :
1 .
]] .
| ! nj Alternative 3
| Ri; -+« Ry representation for :
Nj each user view i
: E ;
1] H
! v :
feame L1 Verification Nooosiomw s nesmmessicnmees s
. /
]
\'A
Rik One selected representation

(k) for each user view i

Figure 2. The View Modeling Step.

developed. In the verification process these representations are
evaluated by the designer and the users in light of their requirements
and a representation is selected for each view. The output of View
Modeling is therefore a formal representation of each user's view.

The view modeling step is most clearly addressed by database
design methods which are explicitly concerned with data modeling.
Data models of Bachman [Ml1], Codd [M3], Senko et al. [M5] and Chen
[M2] all accept as input, descriptions and attributes of entities and
the relationships among these entities. Using the primitives of the
target data model, a representation is developed which embodies the
semantics of these entities and relationships. Bachman represents
entities as record types and relationships as owner-member set types.
Loops and m:n relationships are then eliminated to produce a network
data model. Codd represents both entities and relationships as rela-
tions. Using the data semantics in the form of functional dependen-
cies relations are normalized.

The DIAM [M5] incorporates four successive models of data, start-
ing at a highly abstract level and going down to the level of encoding
on physical devices. The Entity Set Model (ESM) and the string model
are of interest in view modeling since they deal with logical data
structures. In ESM the basic item of information is an entity which
corresponds to some real-world-object or concept, and appears as a
collection of attribute values. The string model is used to represent
attribute grouping and relationships among entities.

Chen's entity-relationship model is a simple extension to the
data structure diagram. It is simple and easy to conceptualize, and
claimed to be semantically richer than the relational and the entity
set model. The entity-relationship model represents a view by means
of entities, relationships, and the attributes of each of them. How-
ever, it does not allow the representation of relationships between
two relationships, or between an entity and a relationship.

The database abstraction methodology [M6] represents both enti-
ties and relationships as objects. This method distinguishes between
two different types of relationships: association of similar entities
(generalization) and association of related entities (aggregation).
The semantic processes of aggregation and generalization are wused to

build a multi-dimensional hierarchy of objects which represents the
user's view.

Navathe and Schkolnick [M4] draw from the data abstraction model
of Smith and Smith and propose a technique for view representation to
achieve a better modeling of the usage perspective and to incorporate
the relationships among data instances, especiaily those which are
used for identification purposes. The objective is to obtain a vehi-
cle which represents a user view as explicitly as possible.

In all of the methods described above the "objects" of the view
representation produced are data groups. The contents of these groups
are either wunspecified (Bachman), or -‘specified directly by the
designer (Chen, Codd, Navathe & Schkolnick, Senko et al, Smith &
Smith). Codd, Senko et al and Smith & Smith allow the designer to
determine identifying data elements (keys) for each object whereas
Navathe and Schkolnick explicitly model the identification of
instances.

In database design methods oriented toward producing implementa-
tion 1level schemas, the view modeling step is less distinct: it is

more tightly bound to the requirements analysis or view integration
steps. In general, these methods are process-oriented and define a
view as data used in a process. Most take descriptions of data items,
item relationships and usage of data elements as input to the view
modeling step.

The CINCOM method [D2, D4] relies on descriptions of data
elements, processing specifications and policy constraints on events
and data as input. Each process is then documented as a series of
events and data elements are associated with the events in which they
are used. Each view, or function, is represented by a flow diagram of
events, annotated with associated data elements. These diagrams
become the input to an analysis of frequency-of-use which groups ele-
ments, determines keys, and synthesizes a community view. This is
described further in Section 5.

In Gerritsen's method [Al], each view is described by the queries
that must be supported. These queries in the HI-IQ language, names of
entities, and data item descriptions are the input to view modeling.
Gerritsen's design system derives relationships between items and
between items and entities from the queries. The information struc-
ture needed to support the view is then represented by a series of
assertions governing the location of items and entities in the final
DBTG schema. The cardinality ratios of the relationships described
are implicit in these assertions, since in a DBTG schema a record type
placed "above" another one implies a 1l:m relationship

In DBDA [A2, A5] views are represented by directed graphs of data
items and their relationships on which the cardinality of each rela-
tionship is recorded. These diagrams are produced by recording data
items from existing input/output documents and analyzing their
interrelationships. Nodes which are the source of relationships, but

not the target of any are implicitly regarded as keys.

Mitoma also uses data item descriptions and item interrelation-
ships as input to view modeling [A3]. He defines data relations (or
binary relationships) for each pair of items to be used together. The
items' and data relations are recorded using a non-directed graph, in
which each node is an item and each edge, a data relation. Unlike the
other methods, Mitoma's view representation contains explicit and
detailed instance level information. The cardinality of each data
relation (the number of instances of item pairs) is recorded. 1In
addition, the cardinality ratio for each relation is recorded specifi-

10

cally in terms of its average and maximum values, e.g. 2:5 or 1:250
instead of m:n or 1:n.

The process-oriented methods described above address the problem
of data grouping during view integration rather than during view
modeling. Key determination 1is similarly postponed wuntil view
integration, except in the case of DBDA.

Table 1 summarizes the characteristics of the view modeling step
for the several design methodologies discussed in this Section.

Table 1. Characteristics of View Modeling in Several
Database Design Methods.

-~
-~
> \-';a 3 i o‘.:o
&§
3 - P ~ § £ o by
5§ & e 55 &4 & £ F 7
< 9] X O) g K £ &
CHARACTERISTICS o S Q™ 9 © 2 Fo o @
Input:
info. requirements
abjects X X X X X X x
items X X X X X
processing
requirements x x x x x
Processing:
semantic analysis x x x x x x
item analysis x x x x x
data grouping x x x x
key détermination/
identification x X x x x
analysis
Output:
representation
objects X x x x b3 X x
ems E3 X X X X
explicit car-
dinality ratios
of instances X X
explicit cardi-
| nality of instances X x

1

5. VIEW INTEGRATION

The objective of the view integration step is to merge the
several view representations produced in view modeling into an
integrated canonical structure. This output structure represents the
community view and must satisfy the following:

a) it must be internally consistent
b) it must reflect accurately each of the original views
c) it must support the processing requirements specified in the

requirements analysis step.

As with view modeling, the integration step may actually produce
several candidate structures, all of which would then be verified
against processing or specifications and those satisfying the process
requirements will be regarded as community structures (see Figure 3).

View integration initially involves some editing to remove incon-
sistencies. Inconsistencies and redundancies may arise at the data-
element, data-group or data-relationship level, in the form of one
name referring to different components (homonyms), or different names
referring to the same component (synonyms). Data-relationship redun-
dancy also includes the relationships that could be implied by other
relationships in the system. These could be reported and subsequently
corrected after designer intervention.

When no inconsistencies or redundancies remain to be resolved the
local views may be integrated by consolidating data and relationships
into a community view. Again, several alternatives may exist. Pro-

‘cess verification is required to determine which of the alternate
structures satisfy processing requirements. The process specification
may be either in terms of queries or procedures. Verification will
consist of insuring i) that keys used in processing may be found, 1ii)
that data items required are available and iii) that the relationships
needed to associate data items or groups are represented. Efficiency
related characteristics such as access path 1length and access

frequencies, will be considered in the Schema Analysis and mapping
steps.

View integration approaches can be generally classified into
three categories:

