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Chapter 1
INTRODUCTION AND FUTURE DIRECTIONS

Ayusman Sen
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania,
16802

1. INTRODUCTION

The discovery of facile catalytic alternating olefin/carbon monoxide
copolymerization (Chapter 4) [1] has significantly impacted the fields of
polymer science, organometallic chemistry, and catalysis. Below we discuss
some of the highlights and unsolved problems.

One of the most significant advantage that the olefin/carbon
monoxide copolymers have over other functional polymers is the cost of
monomers: both carbon monoxide and simple olefins are plentiful and
inexpensive. This can be compared, for example, with nylons which have
physical and mechanical properties comparable to the alternating
ethylene/carbon monoxide copolymer [1c,d,f]. The diamines, diacids, and
lactams that are the nylon precursors are typically synthesized through
multistep processes and are much more expensive [2].

The alternating olefin/carbon monoxide copolymerization procedure
allows the synthesis of a host of new functional materials because of the
ability to incorporate functionalized olefins. The resultant materials are
likely to be of considerable practical importance given the varied
applications of the presently known functional polymers [3]. Examples of
functional groups present on olefins that have been successfully used as
monomers in the copolymerization reaction include alcohol, ether, epoxide,
carboxylic acid, amide, carbamate, perflouro alkyl and aryl [1c.e,f,g, 4]. The
one class of olefins that does not undergo ready copolymerization with
carbon monoxide are those that have the functionality directly adjacent to the
C=C bond, e. g. acrylates, methacrylates, and vinyl carboxylates. In this

1

A. Sen (ed.),
Catalytic Synthesis of Alkene-Carbon Monoxide Copolymers and Cooligomers, 1-7.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.
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sense, olefin/carbon monoxide copolymerization fills a gap between Ziegler-
Natta type and radical polymerizations. The former typically uses early
transition metals that do not tolerate oxygen or nitrogen functionalities [5].
On the other hand, radical polymerization of olefins do not proceed well
unless a stabilizing functionality is present next to the C=C bond. Thus, the
discovery of olefin/carbon monoxide copolymerization allows access to a
new group of monomers.

One particularly interesting example of a new material synthesized
through alternating olefin/CO copolymerization is illustrated in eq. 1 and
involves the two-step synthesis of poly(ketovinylene) [6]. The synthesis of
optically active, isotactic, o-olefin/CO copolymers through the use of chiral
ligands is another noteworthy achievement (Chapters 6 and 7). The resultant
materials are very rare examples of optically active, chiral main-chain
polymers synthesized from achiral monomers. These materials exhibit the
unusual phenomenon of solid-state steric recognition, forming stereo
complexes with properties that are markedly different from those of the
chiral components [7]. Other examples of mew materials synthesized include
polymeric liquid crystals [8], polymeric crown ethers [9], and thermoplastic
elastomers [1f].

(1

Apart from the ability to use functionalized olefins in the
copolymerization reaction, the presence of the reactive carbonyl group in the
polymer backbone provides avenues for further functionalizations. Indeed,
about two dozen polymers incorporating a variety of functional groups have
been previously synthesized from the random ethylene-carbon monoxide
copolymer (C2H4: CO > 1) made through radical-initiated polymerization
[1a]. Since carbon monoxide does not homopolymerize, the alternating
olefin-carbon monoxide copolymers (olefin: CO = 1) have the highest
possible concentration of the reactive carbonyl groups. Additionally, the 1,4-
arrangement of the carbonyl groups in the alternating olefin-carbon
monoxide copolymers provides additional functionalization pathways (e.g.,
Figure 1-1) [10]. Indeed, a cross-linking technology leading to thermoset and
thermoreversible resins has been developed based on the reaction with
primary amines (see Chapter 4) [11].



3

One remarkable feature of the olefin/carbon monoxide copolymerization
catalysts is their tolerance for a wide range of solvents. Thus, apart from the
usual organic solvents, the polymerization has been carried out in water [12],
ionic liquids [13], and supercritical carbon dioxide [14]. Also successful has
been emulsion polymerization in water, leading to stable latices [15].

CH,CH,

o)

N
o |
R

. T -—[}vcmw2
S

P,O / \
L) . ‘C)‘CHZCHz
O

Figure 1-1. Examples of functionalizations involving 1,4-keto groups in olefin/CO
copolymers [10].

The catalytic copolymerization of olefins with carbon monoxide has
also had a significant impact on organometallic chemistry and catalysis. It
has led to a blossoming of the area of catalysis by electrophilic, cationic, late
transition metal compounds. Studies on ligand effects have resulted in the
discovery of new highly active systems that allow the directed synthesis of
compounds ranging from low molecular weight esters, ketones, and
aldehydes (Chapters 2 and 3) to high molecular weight copolymers (Chapter
4). Additionally, copolymerizations with high regio, stereo, and
enantioselectivity have been achieved (Chapters 6 and 7).

Fundamental studies on the copolymerization reaction has led to the
discovery of novel chain initiation and termination processes (Chapter 5).
The chain-propagation mechanism has been shown to consist of two
alternating steps [1b]: the insertion of carbon monoxide into a metal-alkyl
bond and the insertion of olefin into a metal-acyl bond (leading to the
formation of a B-chelate because of carbonyl group coordination) (Chapters
8 and 9). The perfectly alternating structure of the copolymer arises from a
combination of thermodynamic and kinetic constraints [1b,16]. The double
insertion of carbon monoxide (i.e., carbon monoxide insertion into the metal-
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acyl bond) is thermodynamically uphill. On the other hand, the double
insertion of olefin (i.e., olefin insertion into metal-alkyl bond) is kinetically
disfavored due to (a) the stronger binding ability of carbon monoxide and (b)
its faster rate of insertion. Finally, a number of systems have been
discovered that effect the living polymerization of olefins, as well as allenes,
with carbon monoxide, thereby making it possible to form block copolymers
[17].

2. FUTURE DIRECTIONS

What are some of the unsolved problems in the copolymerization
reaction? First, one of the consequences of the special chain-growth
mechanism is that, with one exception, it has not been possible to vary the
ratio of olefin to carbon monoxide units in the polymer backbone. While the
successive insertions of two carbon monoxide molecules is precluded on
thermodynamic grounds, there is no such bar for the successive insertions of
olefin units. However, as described above and in Chapters 8 and 9, a
combination of factors prevents this from occurring. Very recently, Drent
has reported neutral palladium(II)-based compounds containing specific P-O
chelating ligands that catalyze the formation of ethylene/carbon monoxide
copolymers with a C;Hy: CO > 1 [18]. Polyolefins with a few carbonyl units
in the backbone are expected to provide properties (e.g., better adhesion) that
are currently difficult to obtain with pure polyolefins.

One class of olefins that does not undergo ready copolymerization with
carbon monoxide are those that have the functionality directly adjacent to the
C=C bond, e. g. acrylates, methacrylates, and vinyl carboxylates. The
problem is not the failure of these olefins to undergo migratory insertions:
methyl acrylate and vinyl acetate have been shown to undergo facile 2,1-
insertion into Pd-acyl bonds (e.g., Figure 1-2) [19]. Following insertion, it is
the carbonyl of the former acyl group rather than that of the olefin that
coordinates to the metal. This is in contrast to the observed coordination of
the acrylate carbonyl following insertion in the palladium(Il) catalyzed
copolymerization of olefins with acrylates, a phenomenon that is responsible
for significant rate attenuation in the acrylate/olefin copolymerization [20]
(see  Chapter 9). Thus, the stumbling block in the alternating
copolymerization of acrylates, methacrylates, and vinyl carboxylates with
carbon monoxide is not olefin insertion but rather the insertion of carbon
monoxide following olefin insertion.
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Figure 1-2. Model study involving acrylate insertion into palladium-acyl bonds [19d].

A final area of alternating olefin/carbon monoxide copolymerization that
does not appear to have been adequately investigated involves catalysts
based on metals other than palladium. Nickel(II) complexes have been
investigated but have found little success in olefin/carbon monoxide
copolymerization since they exhibit significantly lower activity when
compared to their palladium(Il) analogs (Chapter 4) [21]. Rhodium (I)
complexes have also been shown to be active in alternating
cooligomerization of ethylene, as well as norbornadiene, with carbon
monoxide [22]. In addition, rt-allylrhodium complexes serve as catalysts for
the alternating copolymerization of arylallenes with carbon monoxide [23].
Lastly, there is a report on copper(Il)-catalyzed copolymerization of styrene
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with carbon monoxide [24]. The above reports strongly suggest that active
olefin/carbon monoxide catalysts based on a variety of late transition metals
may be waiting to be discovered.

A possible starting point in the hunt for new olefin/carbon monoxide
copolymerization catalysts involves the known hydroformylation catalysts.
The key intermediate in the hydroformylation mechanism is a metal-acyl
species formed by successive insertions of olefin and carbon monoxide into
an initial metal-hydride bond [25]. The final step in hydroformylation is the
conversion of this metal-acyl species to the aldehyde by hydrogenolysis.
However, under conditions of low hydrogen and high olefin and carbon
monoxide concentrations, further successive insertions of olefin and carbon
monoxide into the metal-acyl bond should occur, resulting in the alternating
cooligomerization and copolymerization of the olefin with carbon monoxide
[22a,b].
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