

8362147

Best of Interface Age

Volume 1: Software
in BASIC

Carl D. Warren
Editor-in-Chief

i
%xj A
a3 £

WP y
%, ~
N————"

HIRAAIRIN

E8362147

dilithium Press
Portland, Oregon

©Copyright, Interface Age, 1979
10 9 8 7 6 5 4 3 2

All rights reserved. No part of this book may be reproduced in
any form or by any means without permission in writing from
the publishers, with the following two exceptions: any material
may be copied or transcribed for the non-profit use of the
purchaser; and material (not to exceed 300 words and one
figure) may be quoted in published reviews of this book.

ISBN: 0-918398-36-3
Library of Congress catalog card number; 79-67462

Printed in the United States of America.

dilithium Press
P.O. Box 92
Forest Grove, Oregon 97116

s EGFMNr-Aeer- A

JUICNIGLE SBC MAGAZINE
For Businessmen...
Professionals...

Students...
You...

Happiness is...a computer magazine you can understand

Step into the exciting world of computing with INTERFACE AGE
Magazine. Written and edited expressly for those who want to get
more out of their life and business through the use of computers. Join
the 85,000 plus who make reading INTERFACE AGE a priority
each month. Enjoy articles that not only tell you how, but show you
how. Each issue of INTERFACE AGE contains projects, programs,
‘games and reports on and about people and their computers.

Learn how easy it is to own and operate your own computer
system at home or in your business. Explore the many ways a com-
puter can make money for you. Keep up to date with the latest new
products and developments. Only INTERFACE AGE brings you all
this plus much, much more.

The magazine leading the way. . .
bringing people and technology together

Please enter my subscription to INTERFACE AGE for: \
[J 1 year d.S. $18.00 0O 2 years U.S. $30.00
[J 1 year Canada/Mexico $20.00 [J 2 years Canada/Mexico $34.00
[J 1 year International Surface Mail $28.00 [J 1 year International Air Mail $50.00

Make Check or Money Order (U.S. Funds drawn on U.S. Bank) payable to:
INTERFACE AGE Magazine P.O. Box 1234, Dept. IA 4 Cerritos, CA 90701

Charge my: (] VisaCard (] Master Charge (] American Express

Card No. ExpirationDate_____ Signature

Name (Print) Title

Company =

Address

City State Zip

Best of Interface Age

Volume 1: Software in
BASIC

=

¥ 48 457 = 5
, 176 r - ey

Preface

Several months ago, it became apparent that we should give
serious thought to creating a ““best of”’ series from the pages of inter-
face Age. The idea seemed like it would not present a major problem
at first, until we looked at the mountain of material we had available.
The quantity wasn’t the only problem. The decision had to be made on
what was best, so it could be included in the reprint series.

After careful consideration, with close attention being paid to
readers’ letters, the decision was made to create a “‘best of” series of
Interface Age Classics. What this meant was that rather than to
create a huge, difficult to use book of just about everything, we are
printing the classic software pieces and the ones that many readers
said they would like to see.

The four reprinted articles. that you find in this volume are those
classics. Furthermore, they represent several different programming
techniques. At the same time, they provide the reader with some of
the most useful software ever created.

Chapter four, “The Great Experiment,” offers the one piece of soft-
ware that has been requested more than any other: the complete
source listing of Uiterwyk’s 4K BASIC. It is an absolute classic. The
source code was released into the public domain by Mr. Uiterwyk for
this software volume, so students of software could achieve max-
imum benefit from its use. For this, we at Interface Age are extremely
grateful.

My staff and | are quite convinced that everyone who makes use of
this first volume will find it invaluable in making better use of their
systems.

Volume 2 of this series is made up of additional general purpose
software from some of the Interface Age authors you have enjoyed
over the past few years. Volumes 3 and 4 are dedicated specifically
toward the small businessman. These two volumes contain more
business software than any book currently available today.

To round out this current “best of” series, Volume 5, Best of Inter-
face Age—Things to Think About, contains those articles for the
futuristic thinker and gadgeteer. This volume contains reprints from
Roger Garret’s famous ‘““Inventor's Sketchpad.” Also included are
short and useful software tips, along with some handy hardware
articles.

M AP0 3
% £ 0 et 7 Fu T

Vi Best of Interface Age/Volume 1

Interface Age has always been known as the leader in the publica-
tion of important and useful software and ideas. We feel that the
publication of this “‘best of”’ series will further enhance our leadership
and provide you with hundreds of hours of enjoyment.

carl warren
editor-in-chief

Acknowledgment

When a reprint series is created, it is of utmost importance to thank
the authors whose works are being reprinted. We gladly extend our ap-
preciation to them. We also thank all those authors that contributed
articles over the past forty-plus issues, and the readers that have
made us such a success.

Robert S. Jones
Publisher

8362147

Table of Contents

Chapter 1 Lawrence Livermore 8080 BASIC

by Jerry Barber, Royce Eckard, John Dickenson, David Mead,
and E. R. Fisher

Original publication date: December 1976, January, February,
and March 1977

Chapter 2 Dr. Wang’s Palo Alto TINY BASIC
by Roger Rauskolb
Original publication date: December 1976

Chapter 3 National’s TINY BASIC—NIBL
by Phil Roybal and Mark-Alexander
Original publication date: December 1976, January 1977

Chapter 4 The Great Experiment—Floppy ROM™ # 1
Robert Uiterwyk’s 6800 4K BASIC

by Bill Turner and William Blomgren

Original publication date: May, July 1977

Appendix A General Software Index
A comprehensive index of general purpose software printed in
Interface Age since January, 1977

Appendix B Available Back Issues
A list of all the back issues that are still available, and how to
obtain them.

Index

139

171

229

301

311

313

Chapter 1

Lawrence Livermore
Laboratories
8080 Basic Interpreter

by Jerry Barber, Royce Eckard
John Dickenson, David Mead
and E. R. Fisher

The year 1976 saw a number of accomplishments to the microcom-
puter world, which was still very much in its infancy. The most impor-
tant developments were with BASIC interpreters being made available
to the micro user.

One such BASIC, was the 8080 version developed at the University
of Idaho by John Dickenson, Jerry Barber, and John Teeter; under a
contract with the Lawrence Livermore Laboratory. The floating point
package was developed by David Mead, modified by Hal Brand and
Frank Olken.

The entire project, including the course listing of the interpreter
was documented in the December 76, January 77, February 77, and
March 77 issues of Interface Age magazine.

Because BASIC is still considered the most important language in
the microcomputer industry, and also due to the continuing interest in
the LLL version, we have re-published it here in its entirety.

STORAGE REQUIREMENTS

The BASIC interpreter consists of a 5K-byte-PROM resident inter-
preter used for program generation and debug was configured to
operate with the MCS-8080 microprocessor.

The goal in developing the 8080 BASIC was to provide a high-level,
easy-to-use conversational language for performing both control and
computation functions in the MCS-8080 microprocessor. To minimize
system memory size and cost, the interpreter was constrained to fit

2 Best of Interface Age/Volume 1

into 5K bytes. It was necessary, therefore, to limit the commands to
those considered the most useful in microprocessor applications.

MATH OPERATOR EXECUTION TIMES

Average execution times of the four basic math operators are as
follows:

Execution time

Operation on 8080 (m sec)
ADD 2.4 m sec
SUBTRACT 2.4 m sec
MULTIPLY 5.4 m sec
DIVIDE 7.0 m sec

BASIC INTERPRETER LANGUAGE GRAMMAR

COMMANDS—Six BASIC interpreter commands are provided.
These commands are:

RUN Begins program execution
SCR Clears program from memory
LIST Lists ASCIl program in memory

PLST Punches paper-tape copy of program

PTAPE Reads paper-tape copy of program using
high-speed reader

CNTRL S Interrupts program during execution

The LIST and PLST commands can be followed by one or two line
numbers to indicate that only a part of the program is to be listed. If
one line number follows the command, the program is listed from that
line number to the end of the program. If two line numbers (separated
by a comma) follow the command, the listing begins at the first line
number and ends at the second.

When a command is completed, READY will be typed on the
teletype. Once initialized by a command, a process will normally go to
completion. However, if you wish to interrupt an executing program or
a listing, simply strike CNTRL S and the process will terminate and a
READY message will be typed.

STATEMENTS—Each statement line begins with a line number,
which must be an integer between 0 and 32767. Statements can be
entered in any order, but they will be executed in numerical order. All
blanks are ignored. The following types of statements are allowed:

REM—Indicates a remark (comment). The system deletes blanks
from all character strings that are not enclosed in quotes (7).
Therefore, it is suggested that characters following the REM key
word be enclosed in quotes.

END—Indicates the end of a program. The program stops when it
gets to the END statement. All programs must end with END.

Livermore BASIC 3

STOP—Stops the program. This statement is used when the
program needs to be stopped other than at the end of the pro-
gram text.

GOTO—Transfers program control to specified statement line
number. This statement is used to loop or jump unconditionally
within a program. Program execution continues from new
statement.

DIM—Declares an array. Only one-dimensional arrays with an
integer constant number of elements are allowed. An array with
N elements uses indexes 0 and N-1. All array locations are set to
zero. No check is made on subscripts to ensure that they are
within the declared array. An array variable must be a single
letter.

LET—Indicates an assignment statement (Addition, subtraction,
multiplication, division, or special function may be used). The
LET statement is used to assign a value to a variable. Non-array
variables can be either a single letter or a letter followed by a
digit. It is possible to have an array and a non-array variable with
the same name. The general form of the LET statement is:

line number LET identifier = expression,
where identifier is either a subscripted array element or a non-
array variable or function and expression is a unary or binary ex-
pression. The expression will be one of the following ten types:
variable
—variable
variable + variable
variable — variable
—variable + variable
—variable —variable
variable * variable
—variable * variable
variable / variable
—variable / variable,
where variable is an identifier, function, or number. The
subscript of an array can also be an expression.

[F—Condition statement which transfers to specified line number
statement if the condition of the expression is met. It has the
form: line number IF expression relation expression THEN
transfer line number. The possible relations are:

Equal

Greater than

Less than

Greater than or equal
Less than or equal
Not equal <> <

If the relation between the two expressions is true then the pro-
gram transfers to the line number, otherwise it continues se-
quentially.

AV AV
I
o

<
<

4 Best of Interface Age/Volume 1

INPUT—This command allows numerical data to be input via the
teletype. The general form is:

Line number INPUT identifier list,

where an identifier list is a sequence of identifiers separated by
commas. There is no comma after the last identifier so, if only
one identifier is present, no comma is needed. When an INPUT
statement is executed, a colon () is output to the teletype to in-
dicate that data are expected. The data are entered as numbers
separated by commas. If fewer data are entered than expected,
another colon is output to the teletype, indicating again that
data are expected. For example, where

50 INPUT I,J,K,P
is executed, a colon is output to the teletype. Then, if only 3
numerical values are entered, another colon will be output to in-
dicate that more data are expected; e.g.,

:4,46.2 C/IR
:10.3 C/R

where CIR is the carriage-feturn key. If an error is made in the
input-data line, an error message is issued and the entire line of
data must be reentered. If, for the above example,

4,46M2,10.3 C/R
is entered, the system will respond:

INPUT ERROR, TRY AGAIN

At this time, the proper response would be
4,4,6.2,10.3 C/R.

PRINT—This command allows numerical data and character strings
to be printed on the teletype. Two types of print items are legal
in the print statement: character strings enclosed in quotes (*)
and expressions. These items are separated by either a comma
or a semicolon. If print items are separated by a comma, a skip
occurs to the next pre-formatted field before printing of the item
following the comma begins. The pre-formatted fields begin at
columns 1, 14, 27, 40, and 52. If print items are separated by a
semicolon, no skip occurs. If a semicolon or comma is the last
character on a print statement line, the appropriate formatting
occurs and the carriage-return-line feed is suppressed. A print
statement of the form

50 PRINT
will generate a carriage-return-line feed. Thus the two lines
below
50 PRINT “INPUT A NUMBER""
60 INPUT A
will result in the following output:

INPUT A NUMBER:
FOR—Causes program to iterate through a loop a designated
number of times.

Livermore BASIC 5

NEXT—Signals end of loop at which point the computer adds
the step value to the variable and checks to see if the variable is
still less than the terminal value.

GOSUB—Transfer control to a subroutine that begins at specified
line number.

RETURN—Returns control to the next sequential line after the last

GOSUB statement executed. A return statement executed
before GOSUB is equivalent to a STOP statement.

CALL—Calls user-written assembly-language routines of the

form
CALL (N,A,B,. . .),

where N is a subroutine number from 0-254 and A, B,... are
parameters. The parameters can be constants, variables, or ex-
pressions. However, if variables and constants or expressions
are inter-mixed, all variables should have been referenced before
the CALL statement. Otherwise, the space reserved for newly
referenced variables may overwrite the results of constants and
expressions. A memory map of one configuration of the system
is shown below.

Page 10
Page 11
ODT STACK
BASIC
INTERPRETER
ACTIVE VAR'S. Pointer to first word
of available memory and
First word of —] USER SUB'S subroutine table
available —
KT USER SOURCE
BASICSTK L page 43 Loc 370g

The subroutine table contains 3-byte entries for each
subroutine. The table directly follows the pointer to the first
word of available memory (FWAM) and must end with a octal
377. A sample table and its subroutines is shown below:

ORG 16612Q

DWSUBEND ;Define FWAM

DB 1 ;Subroutine #1

DW SUBH1 ;Starting add of subroutine

#1
DB 4 ;Subroutine #4

6 Best of Interface Age/Volume 1

DW sSuB4 ;Starting add of subroutine
#4
DB 5 ;Subroutine #5
DW SUB5 ;Starting add of subroutine
#5
DB 2 ;Subroutine #2
DB SUB2 . ;ete.
DB 377Q ;end of subroutine table
SuUB1:!| ;Subroutine #1
RET
SUB5:!| ;Subroutine #5
RET
[]
[]
L]
RET - ;Retain last subroutine

SUBEND EQU$;FWAM

Addresses to passed parameters are stored on
the stack. The user must know how many
parameters were passed to the subroutine.
These must be taken off the stack before RET is
executed. Addresses are stored last parameter
first on the stack. Thus, on entry to a
subroutine, the first POP instruction will
recover the address to the last parameter in the
call list. The next will recover the next to last,
etc.

Each scalar variable passed results in the ad-
dress to the first byte of a four-byte block of
memory. Each array element passes the ad-
dress to the first byte of a (N-M)x four-byte
memory block, where N is the number of
elements given the array in the DIM STMT and
M is the array subscript in the CALL STMT.

For passed parameters to be handled in expres-
sions within BASIC, they must be in the proper
floating-point format.

FUNCTIONS—Two special functions not found in most BASIC

codes are available to input or output data through Intel 8080 port
numbers. These functions are;

GET (X) = READ 8080 INPUT PORT X.
PUT (Y)=OUTPUT A BYTE OF DATA TO OUTPUT
PORT Y.

The function GET allows input from a port and the function PUT
allows output to a port. Their general forms are:
GET (expression).
PUT (expression).
The function GET may appear in statements in a position that implies
that a numerical value is used. The function PUT may appear in

Livermore BASIC 7

statements in a position that implies that a numerical value will be
stored or saved. This is because GET inputs a number and PUT out-
puts a number. For example, while

LET PUT(l) = GET(J) is valid

LET GET(l) = PUT(J) is invalid.

These functions send or receive one byte of data, which in BASIC is
treated as a number from 0 to 255.

VARIABLES—Single characters A—2
Single character followed by a signal decimal digit

NUMBERS—Numbers in a program statement or input via the
teletype are handled with a floating-point package provided by LLL.
Numbers can have any of the following forms:

4 +4, 123
4. +40 +.123
4.0 1.23 0.123
+4 +1.23 +0.123

and the user may add an exponent to any of the above forms using the
letter E to indicate powers of 10. The forms of the exponent are:

Ex1 E+15
E 1 E 15
E 1 E 15

The numbers are stored with seven-digit accuracy; therefore, seven
significant figures can be entered. The smallest and largest numbers
are +2.71051E-20 and +9.22337E18.

Floating point numbers are expressed as a 32 bit operand con-
sisting of a 24 bit normalized fractional mantissa in standard two’s
complement representation and a 6 bit exponent also is standard
two’s complement representation with a range of — 64 to +63. The ex-
ponent byte also includes the exponent sign bit and mantissa sign bit.
The floating point number format is as shown in the following:

I SIGN BIT MANTISSA

/—— PRESUMED DECIMAL POINT [/—S'GN BIT EXPONENT
eloelolelelefrlelelelelel ool elelelslz o] Dol = L L] e
BYTE N BYTEN+ 1 BYTEN +2 BYTE N + 3 ———
|———— MSB MANTISSA ———f }——— LSB MANTISSA ——
6 BIT
J=—————————— THREE BYTE NORMALIZED FRACTION MANTISSA ———{ EXPONENT)
(TWO COMPLEMENT REPRESENTATION)
FOURBYTE FLOATING POINT OPERAND
_I A Operators - Arithmetic operators © Multiply
| /' Div
+

Add

= Sub
Relational operators = Equal
> Not Equal
Less Than
Greater Than
Less Than or Equal
Greater Than or Equal

LAV A A

3
\4

8 Best of Interface Age/Volume 1

INTERPRETER OPERATION

INITIALIZATION—The BASIC interpreter is presently configured so
that it is located in memory pages 11, to 34,. The starting address is
page 17, location 0. This address begins an initialization sequence
that allows the user to begin with a clear memory. However, to avoid
the initialization sequence, a second starting address—page 17, to
34,—can be used. This starting address is used if the user wishes to
retain any program that might exist in memory.

Once started the interpreter responds with READY.

INPUT LINE FORMAT

Each line entered is terminated with the carriage-return key. The
line-feed key is ignored. Carriage-return automatically step terminal
to next line and waits for next line statement number input.
Statements can be entered in any order, but they will be executed in
numerical order. All blanks outside of quotation marks are ignored by
the interpreter. Up to 72 characters may be enterediline.

INPUT LINE EDITING—A program can be edited by using the line
numbers to insert or delete statements. Typing a line number and then
typing a carriage return causes the statement at that line number to
be deleted. Since the statements can be entered in any order, a state-
ment can be inserted between two existing statements by giving it a
line number between the two existing statement line numbers. To
replace a statement, the new statement should have the same line
number as the old statement.

It is possible to correct errors on a line being entered by either
deleting the entire line or by deleting one or more characters on the
line. A character is deleted with either the rubout key or the shift/O
key. Several characters can be deleted by using the rubout key several
times in succession. Character deletion is, in effect, a logical
backspace. To delete the line you are currently typing, use the
CNTRL/Y key.

BASIC PROGRAM EXECUTION—Entering a RUN command, after a
BASIC program has been entered into the microcomputer, will cause
the current program to begin execution at the first statement number.
RUN always begins at the lowest statement number.

ERROR MESSAGES—If an unrecognizable command is entered,
the word WHAT? is printed on the teletype. Simply retype the com-
mand. It may also have been caused by a missing line number on a
BASIC statement, in which case you should retype the statement with
a line number.

During program execution and whenever new lines are added to the
program, a test is made to see if there is sufficient memory. If the
memory is full, MEMORY FULL is printed on the teletype. At this point,
you should enter one of the single digits below to indicate what you
wish to do:

Livermore BASIC 9

Number
Entered Meaning
0 (RUN) runs
0 (RUN) runs the program in memory
1 (PLST) outputs program in memory to
paper tape punch
2 (LIST) lists program in memory
3 (SCR) erases program in memory
4 none of the above (will cause WHAT?

to be printed out on the teletype).

To help you select the best alternative, a brief description of how
the statements are manipulated in memory will be helpful. All lines
entered as program are stored in memory. If lines are deleted or
replaced, the originals still remain in memory. Thus, it is possible, if a
great deal of line editing has been done, to have a significant portion
of memory taken up with unused statements. If a MEMORY FULL
message is obtained in these circumstances, then the best thing to do
is punch a tape of the program (entering number 1), then erase the pro-
gram memory with a SCR command (or a number 3, if memory is too
full to accept commands), and then re-enter your program using the
high-speed paper-tape reader with the PTAPE command.

If an error is encountered while executing a program, an error
message is typed out that indicates an error number and the line
number in which the error occurred. These numbered error messages
are as follows:

Error
Number Error Message
1 Program has no END statement
2 Unrecognizable keyword at beginning of state-
ment
3 Source statements exist after END statement
4 Designation line number is improperly formed in a

GOTO, GOSUB, or IF statement
5 Designation line number in a GOTO, GOSUB, or IF
statement does not exist

6 Unexpected character
7 Unfinished statement
8 lllegally formed expression
9 Error in floating-point conversion
10 lllegal use of a function
11 Duplicate array definition
12 An array is referenced before it is defined
13 Error in the floating-point-to-integer routine,

Number is too big
14 Invalid relation in an IF statement

