Essentials of

FORTRAN 77

_._ﬁ f—_

L
ij 7 A
/ ;'! /
7
iJ [S
T —
i
’/ £
4 / {f
LS J

John Shelley

Essentials of

FORTRAN 77

John Shelley

Imperial College Computer Centre, London

John Wiley & Sons
Chichester - New York - Brisbane - Toronto - Singapore

Copyright © 1984 by John Wiley & Sons Ltd.
All rights reserved.

No part of this book may be reproduced by any means, nor
transmitted, nor translated into a machine language without
the written permission of the publisher.

Library of Congress Cataloging in Publication Data:

Shelley, John.
Essentials of Fortran 77.
Includes index.
1. FORTRAN (Computer program language) I. Title.
I1. Title: Essentials of Fortran seventy-seven.
QA76.73.F255447 1984 001.64°24 84-7452
ISBN 0 471 90502 X

British Library Cataloguing in Publication Data:
Shelley. John, 71940~
Essentials of Fortran 77.
1. FORTRAN (Computer program language)
I. Title
001.64°24 QA76.73.F25
ISBN 0 471 90502 X

Printed in Great Britain

f,bec{ica[ion: jo my Wol/wr

Preface

This text introduces the principal features of programming as well as essential
features of the Fortran 77 computer programming language. It is intended for those
with little or no previous computing or programming experience, and for those who
wish to convert to Fortran 77 from some other language.

After many years of teaching programming to many thousands of students it is clear
that the skill of programming is learned only by practice, in the way that the theory
of music must be put into practice on some instrument. For this reason, this text has
been designed to accompany laboratory sessions during which the program
exercises at the end of the chapters can be written and executed. For those
interested, Appendix 5 provides a timetable and, Appendix 6, a set of program
exercises for an intensive one-week practical programming course held at Imperial
College, London.

The text does not attempt to orient the use of Fortran to any particular discipline or
group of students. Instead, it sets out to illustrate the zoo/s of Fortran 77 and how
these are used. It is left to the individual to apply this knowledge to his or her own
particular subject, in much the same way that an apprentice carpenter is taught to
understand how and when the tools of his trade can be applied.

Chapters 1 and 2 are intended to introduce the principles of problem solving with
the aid of a computer. For the beginner, this is not an easy task to come to terms
with since it requires an entirely new approach to problem solving. These two
chapters should be read carefully. The rest of the text concentrates upon essential
features of Fortran 77.

Fortran 77, however, is a large and complex language. It is easy to confuse novices
by presenting at one time @// the variations of a particular programming feature.
Hence, care is taken to present in some cases just part of the total picture. Once
students have gained confidence with this part, they can move onto to the more
detailed parts. In order to achieve this, the material has been organised at various
levels or cycles as I have called them. By following all the material at cycle 1 and
then returning to a study of all the material at cycle 2 and, later, cycle 3, students will
be able to absorb relevant aspects best suited to their own level of experience. The
exercises and tests at the end of Chapters are also arranged to follow this cyclic
method. As a colleague of mine pointed out, this is the first ‘circular’ text he had
come across. However, readers with some previous programming experience and,

vii

viii

sufficient confidence, may ignore the cycles altogether.

In most practical programming courses, for which this text is intended, there is time
only to present the essential features of Fortran 77. It is better for the student to
become confident in the use of this working set and, later, to discover the rest, than
to flood the mind with so much that very little can be assimilated. Thus, we do not
claim to teach all of Fortran 77 preferring, instead, to teach what is most needed.
The purpose of the final chapter is to point towards other possible ‘useful’ features
which students can study at a future time.

John Shelley M.Phil., DIC, MBCS.
January, 1984.

CYCLE CHART

Text |Appendix 1| Chapter 1 2 5|/6|7|8|9(10(11|12/13|App: 2 |App: 3| App: 4|App' 5| App: 6
Cycle 1 § § §/8/8|8|§8/|8 8|8
2 §/8/8| [5/8|8
§ §/8| § § §
4 On your own with Computer Centre’s reference manual

Note to the Reader

Fortran, the first of the so-called 'high-level-languages’ was developed in 1956 for use
on an IBM 704 computer. During the middle 1960’s, it became widely used on a
number of machines resulting in a variety of ‘dialects’. By 1962, the American
Standards Institute (later to become the American National Standards Institute -
ANSI) set up a working party to produce a specification for the language. In March,
1966, two versions were approved - Fortran II and Fortran IV. Their popularity grew
to such an extent that most computer manufacturers had to ensure that their dialect
of Fortran conformed to these standards.

Fortran IV (sometimes referred to as Fortran 66 - the year of its final approval), the
more popular of the two standards, became the standard Fortran language. A
decade later another standard Fortran language was specified, Fortran 77. This
accepts most of Fortran IV but has certain additional features such as the
IF-THEN-ELSE construction, CHARACTER type, enhancements to the DO loop counter
and the index of subscripted variables.

In the diagram below, Fortran IV is seen to be within the Fortran 77 language
indicating that what is in the Fortran IV specification is also accepted in the Fortran
77 standard. But there is also an area of extensions. These are features over and
above the standards laid down by the 1977 Fortran Committee and are defined by
individual computer manufacturers and installations. They apply in particular to file
manipulation, character encoding and input and output facilities. The way to
discover these extensions is to consult the reference manual supplied by the
manufacturer or installation.

xran
< Za

ortran
pava

1X

X

In this text, we shall concentrate on standard Fortran 77 and not the particular
extensions permitted by individual computer systems. Since some readers may well
have to refer to programs written in Fortran IV, we take the precaution of stating
where appropriate the differences between Fortran IV and Fortran 77.

WYour Guarantee: Each program in this text, except for those in the Exercises
which contain deliberate errors, has been executed on a computer (a CDC Cyber 174)
to ensure that it is correct.

j/ze oazclurer ’J /Qro ress
7

Ay leturaey we ved ta unt/er'?o three p/zajeé. jn the /mt /J/lade we
tend to teach all we hnow about a Jué/ecl. Qburing the Aecom/p/za:e, we
teach ofl we did not know the first lime vound. But in the third and
final phase, we have, at last, leamed lo teach what students need to

énuw.

X1

10.

11.

12.

13,

Contents

Introduction to Programming(
Program Designs
First Acquaintance with Fortran 77
Free-format READ & WRITE
Arithmetic
Repetition & Decisions
Characters
Formatted READ & WRITE
Subscripted Variables
DO-loops
Subroutines
Program Engineering
Further Fortran Features
Functions
Implied DO-loop

PARAMETER
More about Characters

More Input & Output & File Usage

Other Data Types
COMMON
The rest of Fortran 77

Xiii

14

21

30

58

65

78

87

96

108

128

Xiv

Appendix 1: The Computing Process
Appendix 2: Types of Programming Languages
Appendix 3: Types of Errors

Appendix 4: Documentation

Appendix 5: A Fortran 77 Course Timetable
Appendix 6: Solutions to Tests & Exercises
Glossary of Terms & Acronyms

Index

144

156

159

162

164

167

192

199

Chapter 1: Introduction to Programming

5 Cycle I

First exposure to programming a computer can be a somewhat daunting experience,
especially if you have no understanding of what a computer is or what it can do and
are totally confused by all the jargon. If you are new or fairly new to computing,
you are strongly advised to read Appendix 1 (The Computing Process) before
proceeding any further.

This Appendix will explain briefly what computers are, why people want to use them
and how human beings communicate with computers. It will introduce the essential
and common jargon terms; and, most important, for the aspiring programmer, it will
outline the basic operations performed by any computer.

A Fundamental Point
No matter how much a computer costs, be it £5 or £5 million, no matter how large
or small, a computer can perform but foxr basic operations:

e input & output operations;

o arithmetic operations;

e decisions (via comparison & logic operations);

e movement (and structuring) of data operations inside the CPU.

The skill (some prefer to call it an art) of programming lies in the ability of the
programmer to break down some overall problem, such as space exploration, traffic
control, retail stock control, into an interplay between these four elementary
operations. No matter how sophisticated a programming language is claimed to be
any instruction in that language will be seen to be one or a combination of these
four operations.

Because of the basic nature of the type of operations performed by computers, a
program has to be very detailed, much more detailed than we are used to when
conversing with each other. Programming then can be an arduous, lengthy and
expensive business.

A Moral

Computers are of value as problem solvers only when the human effort involved in
writing the program is /ess than the effort involved using some other method. Thus,
if you want to add up some numbers, reach for a pocket calculator.

1

2 Essential Fortran 77

However, in order to demonstrate the techniques of programming, we shall have to
use some simple examples, frequently of an arithmetical nature. This is forced upon
us at the teaching stage. It is left to you to remember that we are not necessarily
advocating the use of computers in such simple cases.

Our First Problem

Suppose we want a human colleague to convert temperatures from Fahrenheit to
Centigrade and vice versa. This might be a problem set for school children. We
would have to provide two elements:

e an instruction (convert from Fahrenheit to Centigrade and vice versa)
* a list of temperatures.

List of Temperatures Instruction Flgure L1
Fah: 21° Convert Fahrenbeit to Centigrade

Cent: -32° and vice versa.

Fah: -102.5°

Fah: 356°

Cent: 235.5°

If we want to use a computer to do the same thing, we must also supply the same
two elements. To use computer jargon, the instruction is called a program and the
temperature values called data values or just data for short. However, the program
(the collection of instructions to solve a given problem) could well involve some 7 or
more instructions and not just the one when involving a human being. It is the
detailed level of program instructions which distinguishes between the human being
and the computer as problem solvers.

Where To Begin

How do we begin to convert a problem into a format which can be readily
understood by a computer? After we have understood the problem itself, there are
three points to bear in mind.

Know Thy Data

This is most important. For many programmers, this must frequently be the actual
starting point of the entire programming process. Unless we know exactly the
nature of our data, we cannot solve the problem. We shall have need to return to
this point from time to time.

Furthermore, it is necessary to know how the data is to be organised for input int‘o
the computer. Sometimes, programmers can decide this for themselves. But with
most serious programs, this choice will not be there. Someone else will have already
decided upon the format of the data. Therefore, as a programmer, you will need to
find out how the data has been arranged so that your program can call it into the
computer memory.

Introduction to Programming 3

Data is in the External World

A program is written assuming that it is inside the computer memory whilst the data
upon which it will work lies outside. The program, via an zzput operation will have
to call the data from the outside world into central memory (CM). Figure 1.2 shows
that data may come from a card reader (i.e. data is punched as holes on a card),
typed in at a keyboard, or, indeed, stored on some magnetic media. At the simplest
level, the computing process is an ‘input of data’ - ‘process data’ - ‘output results’
procedure (I-P-O).

-

INPUT OUTPUT
COMPUTER

Screen
m Program

Card :
reader Line
printer
Auxiliary
. Magnetic
Figure 1.2 Storage

Programs are General

A program has a general air about it. It does not make sense to write a program to
add up two specific numbers (e.g. 4 and 5). Should I want two different numbers to
be added up, e.g. 12 and 23, I would have to write another program. Thus, when I
do write the program, I make sure that it is general enough so that it will add up any
two numbers.

In our case, we shall try to make our program so general that it will convert any list
of temperatures which we care to provide. This is fundamental to programming.
No one writes a payroll program or a graphics program to perform just one payroll
or to design just one car. Payroll programs are written to perform the same function
every week; design programs are written to function for any possible car design.
Bearing these three points in mind, how do we now begin with our problem?

Temperature Conversions
First, what do we know about our data?

o the data is in two parts, one part indicates the type of degree, the other is the
temperature itself; e.g: Fahrenheit, 23; Centigrade, -102.
o the number of conversions to perform is unknown.

We also need to know how the pair of values are to be entered into the computer.
In our case, and to make matters simple at the start, the data is to be entered at a

4 Essential Fortran 77

keyboard as a pair, the first being the ‘type indicator’, the second being the
‘temperature’. The types of temperatures may be entered in any sequence. This may
seem unnecessarily detailed, but you will soon discover that without such detail you
cannot write the program.

Thus, everytime a pair is entered, the computer via our program will need to
determine the type of degree, convert to the other form, and then request another
pair. This procedure will continue until there are no more values to enter.

We must now provide the computer with a sequence of steps which it will follow
one after the other until it is told to stop doing any more, i.e. to stop the execution
of the program. The idea in programming is for the computer to begin at step one,
(the first instruction), and to proceed in strict sequence through the rest of the
instructions. There is nothing unusual about this. We do the same when following
a cooking recipe, a knitting pattern, the instructions for constructing a piece of
furniture, etc.

We need to create or design a sequence of steps which as a total set will solve the
given problem. This is more formally called an algorithm. Since we have no idea of
how to write program instructions, we shall present a series of steps using concise
English phrases which can later be converted (coded) into programming instructions.

So, what should our first ‘instruction’ be? Clearly, since the program is inside the CM
and the values are lying outside waiting to be read in, we shall need to instruct the
computer to perform an input (reading in) operation to bring in the first pair. This is
step 1 in figure 1.3. The next step is to determine which type of degree has been
entered. If it is Fahrenheit, then the temperature needs to be converted to
Centigrade and the result printed out; otherwise, as step 3, if the type is Centigrade,
then convert to Fahrenheit and print result. Having completed the conversion on
the first pair, the program must now instruct the computer to read in a second pair,
perform the conversion, print result; read in pair 3; etc. ’

step 1: read in FIRST PAIR of TYPE & TEMP

step 2: if TYPE is Fahrenheit, convert TEMP to Centigrade, print result
step 3: otherwise, convert TEMP to Fahrenheit and print result

step 4: read in SECOND PAIR of TYPE & TEMP

step 5: if TYPE is Fahrenheit, convert TEMP to Centigrade and print result

step 6: otherwise, convert TEMP to Fahrenheit and print result

step 7: read in THIRD PAIR of TYPE & TEMP etc... Figure 1.3

Introduction to Programming 5

However, if we have 20 or 20 000 pairs in the set, this procedure becomes not only
tedious, but so time-consuming to write out that it would be quicker to do the
whole thing by hand. Furthermore, we should have to know the exact number of
pairs to read in. This is seldom the case for the majority of programs.

A Basic Pattern

One point emerges from our first simple approach to the solution. There is a basic
set of actions which is similar for each pair. This basic pattern is enclosed in the
brackets, and consists of reading in another pair, determining the type and then
converting the temperature to the opposite. As you gain experience, you will
discover that unless a basic pattern begins to emerge quite quickly, it could be that
the computer is 7ot the best tool to use, and you may have to consider some
alternative.

Provided that we are not specific in reading in a given pair (the first, the second, etc),
we can reduce the number of steps as shown in Figure 1.4. By reading in another
pair, we can repeat the steps enclosed in the bracket. This is one of the most
significant features of programming, the ability to repeat the same instructions many
times. Note well, that the program now has a general air about it.

4

read in ANOTHER PAIR

if TYPE is Fahrenheit, then convert TEMP to Centigrade and print result
otherwise, convert TEMP to Fahrenheit and print result

Repeat until no more pairs

Stop execution of program. Figure 1.4

Note that although the basic pattern in the bracket is a repeated sequence, it is 7ot an
exact repetition. Why not?

In fact, it is a similar sequence but working on different data values each time. This
means that we need to pay great attention to the zames used in instructions. Chapter
3 will discuss this point in detail.

Before going any further, try a few simple exercises in order to consolidate the
features presented in this chapter. It will make you begin to think about a problem
in the way that a programmer has to when first presented with a problem for
computer solution. In the exercises, use the method discussed in this chapter.
Remember the four basic operations which computers perform and use concise
English phrases to describe the separate steps in the solutions. If you find it strange
and difficult to think out a problem in such detail do not be surprised or put off.

6 Essential Fortran 77

Experience gained from practice will make it easier.
Exercises

Cycle 1:

1. Find the sum of a set of ten positive numbers.

2. Extend the above to compute the average of the sum.

3. Find the average speed and cost of petrol for a car trip involving the 3 journeys
below:

AsB: 50 milesin 2" hrs

B=C: 193 miles in 3 hrs

C=A: 10 miles in 15 mins.
Assume the car does 40 miles to the gallon @£1.83 per gallon.
where: average speed = distance -+ time.

Test

Cycle 1:
1. Fill in the missing line: Know Thy Data

Programs are General
2. Explain what is meant by programs being general.

3. List the four basic operations a computer can only perform.

