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Preface

The purpose of this book is to provide core material in nonlinear analysis for
mathematicians, physicists, engineers, and mathematical biologists. The main
goal is to provide a working knowledge of manifolds, dynamical systems, tensors,
and differential forms. Some applications to Hamiltonian mechanics, fluid me-
chanics, electromagnetism, plasma dynamics and control theory are given in
Chapter 8, using both invariant and index notation. The current edition of the
book does not deal with Riemannian geometry in much detail, and it does not
treat Lie groups, principal bundies. or Morse theory. Some of this is planned
for a subscquent edition. Meanwhile, the authors will make available to interested
readers supplementary chapters on Lie Groups and Differential Topology and
invite comments on the book’s contenis and development.

Throughout the text supplementary topics are given, marked with the symbols
B and #&9. This device cnables the reader to skip various topics without
disturbing the main flow of the text. Some of these provide additional background
material intended for completeness, to minimize the necessity of consulting’too
many outside references. ,

We treat finite and infinite-dimensional manifolds simultaneously. This is partly
for efficiency of exposition. Without advanced applications, using manifolds of
mappings, the study of infinite-dimensional manifolds can be hard to motivate.
Chapter 8 gives a hint of these applications. In fact, some readers may wish to
skip the infinite-dimensional case altogether. To aid in this we have separated
into supplements some of the technical points peculiar to the infinite-dimensional
case. Our own research interests lean toward physical applications, and the choice
of topics is partly molded by what is useful for this kind of research. We have
tried to be as sympathetic to our readers as possible by providing ample examples,
exercises, and applications. When a computation in coordinates is easiest, we
give it and do not hide things- behind complicated invariant notation. On the
other hand, index-free notation sometimes provides valuable geometric and com-
putational insight so we have tried to simultaneously convey this flavor.

The prerequisites required are solid undergraduate courses in linear algebra’
and advanced calculus. At various points in the text contacts are made with other
subjects, providing a good way for students to link this material with other courses.
For example, Chapter 1 links with point-set topology, parts of Chapter 2 and 7
are connected with functional analysis, Section 4.3 relates to ordinary differential
equations, Cnapter 3 and Section 7.5 are linked to differential topology and
algebraic topology, and Chapter 8 on applications is connected with applied
mathematics, physics, and engineering. '



This book is intended to be used in courses as well as for reference. The
sections are, as far as possibie, lesson sized, 1if the suppicrcntary maierial is
omitted. For some sections, like 2.5, 4.2, or 7.5, two lecture hours are required.
A standard course for mathematics graduate students could omit Chapter 1 und
the supplements entirely and do Chapters 2 through 7 in one semester with the
possible excepiion of Section 7.4. The instructor could then assign centain sup-
plements for reading and choose amorg the applications of Chapter 8 according
to taste. A shorter course, or a course advanced undergraduates, probably should
omit all supplements, spend about two lectures on Chapter | for reviewing back-
ground point set topology, and cover Chapters 2 through 7 with the exception
of Sections 4.4, 7.4, 7.5 and all the material relevant to volume elements induced
by metrics, the Hodge star, and codifferential operators in Sections 6.2, 6.4,
6.5, and 7.2. A more applications oriented course could skim Chapier |, review
without proofs the material of Chapter 2, and cover Chapters 3 to 8 cmitting the
suppiementary material and Sections 7.4 and 7.5. For such a coursc the mstluuor
should keep in mind that while Sections 8.1 and 8.2 use only elementary material,
Section 8.3 relies heavily on the Hodge star and codiffercntial operators. and
Section 8.4 consists primarily of applications of Frobenius™ theorermn dealt with
in Section 4.4,

The notation in the book is as standard as conflicting usages in the literature
allow. We have had to compromise among utility, clarity, clumsiness. and ab-
solute precision. Some possible notations would have required oo much inter-
pretation on the part of the novice while others, while precise. would have been
so dressed up in symbolic decorations that even an expert in the field would not
recognize them.

In a subject as developed and extensive as this one. an accurate history and
crediting of theorems is a monumental task, especially when so many results are
folklore and reside in private notes. We have indicated some of the important
credits where we know of them, but we did not undertake this task systematically.
We hope our readers will inform us of these and other shortcomings of the book
so that, if necessary, corrected printings will be possible. The reference list at
the back of the book is confined to works actually cited in the text. These works
are cited by author and year like this: deRham [1955].

During the preparation of the book, valuable advice was provided by Maicolm
Adams, Morris Hirsch. Charles Pugh, Alan Weinstein, and graduate students in
mathematics, physics and engineering at Berkeley, Santa Cruz and eisewhere.
Our other teachers and collaborators irom whom we learned the material and
whe inspired, directly and indirectly. various portions of the text are too numerous
to g'nention individually, so we hereby thank them all collectively. We have taken
the opportunity in this edition to correct some errors kindly pointed out by our
reatiers and to rewrite numerous sections. This book was typesct on a Macintosh
uqmg Mathwriter (Cooke Publications Inc, Ithaca, N ¢ thank Connie Calica.
DQIy Hollinger, Marnie MacElhiny and Esther 7ank for their invaluable help
w:th the typing.

We intend this book to be an evolving project. That is, we invite corrections
and commenis froin our.readers to be incorporated into future printings. We are



currently preparing some supplementary chapters and plai to include a differential
topology and Lie groups chapter in the next printing—space permitting. Mean-
while. if you wish (o see these chapters. we will be happy to send them to you
in exchange for your comments.

Februarv. 198§
RALPH ABRAHAM

JERROLD E. MARSDEN
Tupor RATIU



Background Notation

The reader is assumed to be familiar with the usual notations of set theory
such as €. C, U. M and with the concept of a mapping. If A and B are sets
and if {2 A—B is a mapping, we write a = f(a) for the effect of the mapping
on the element of a € A; “"iff"" stands for *‘if and only if " (= "if"" in definitions).
Other notations we shall use without explanation include the following:

B e

<

B

n

=Ky

n

LxeR
AcCB

2R>NSD

AN\ B

| orid

'(B)

I, = {(x.fix)) | x € domain of f}
inf A

sup A
€y, .oy €y
ker T, range T

D.(m)
B.(m)

end of an example or remark

end of a proof

proof of a lemma is done, but the proof
of the theorein goes on

real, complex numbers

integers, rational numbers

Cartesian product

Euclidean n-space, complex n-space

point in R"

set theoretic containment (means same as
A cC B)

set tHeoretic difference

identity map

inverse image of B under f

graph of f

infinimum (greatest lower bound) of the
set ACR

supremum (least upper bound) of A ¢ R

basis of an n-dimensional vector space

kernel and range of a linear
transformation T

open ball about m of radius r

closed ball of radius r (also denoted
ﬁ(m)).
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Chapter 1
Topology

The purpose of this chapter is to introduce just enough topology for later requirements. It is
assumed that the reader has had a course in advanced calculus and so is acquainted with open,
closed, compact, and connected sets in Euclidean space (see for example Marsden [1974a] and
Rudin [1976]). If this background is weak, the reader may find the pace of this chapter too fast. If
the background is under control, the chapter should serve to collect, review, and solidify concepts
in a more general context. Readers already familiar with point set topology can safely skip this
chapter.

A key concept in manifold theory is that of a differentiable map between manifolds.
However, manifolds are also topological spaces and differentiable maps are continuous. Topology
is the study of continuity in a general context; it is therefore appropriate to begin with it. Topology
often involves interesting excursions into pathological spaces and exotic theorems. Such
excursions are deliberately minimized here. The examples will be ones most relevant to later
developments, and the main thrust will be to obtain a working knowledge of continuity,
connectedness, and compactness.

We shall take for granted the usual logical structure of analysis without much comment,
except to recall one of the basic axioms that is in common use and an equivalent result. These will

be used occasionally in the text.

Axiom of choice If S is a collection of nonempty sets, then there is a function
S USESS suchthat x(S)e S forevery Se S

The function ¥ chooses one element from each S € S and is called a choice function. Even
though this statement seems self-evident, it has been shown to be equivalent to a number of
nontrivial statements, using other axioms of set theory. To discuss them, we need a few
definitions. An order on a set A is a binary relation, usually denoted by "<" satisfying the
following conditions:

a<a (reflexivity)
a<b and b<a implies a=b (antisymmetry), and

a<b and b<c implies a<c (transitivity).
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An ordered set A iscalled a che in if forevery a,be A, a#b wehave a<b or b<a
The set A is said to be well ordered if it is a chain and every nonempty subset B has a {irst
element; i.e., there exists an clement b e B 'such that b< x for all x € B. An upper bound e
A of achain C € A is an element for which ¢ <u forail ¢ e C. A maximal element m of an
ordered set A is an element for which there is no other a€ A suchthat m <a, a#m; inother

words x<m forall xe A thatare compa-able to m. We state the following without proof.

Theorem Given other axioms of set theory, the following statements are equivalent:
(1) The axiom of choice.
(i) Product Axiom If (A, )},.; isa collection of nonempty sets then the product space
IT, A ={(x{)] x;& A} is nonempty.
(iii) Zermelo's Theorem Any set can be well ordered.
(iv) Zorn’s Theorem If A isan ordered set for which every chain has an upper bound
(i.e., Ais inductively ordered), then A has at least one maximal element.

§1.1 Topological Spaces

Abstracting ideas about open sets in R" leads to the notion of a topological space.

" 1.1.1 Definition A topological space is a set S together with a collection O of subsets called
open sels such thai
TT QG eOand Se O;
T2 fU,U, e O then UynlU, € O;

Y3  the union of any collection of open sets is open

A basic example is the real line. We choose S =R, with O consisting of all sets that are
unions of open intervals. As exceptional cases, the empty set @ ¢ O and R itself belong to O
Thus T1 holds. For T2, let U, and U, € O; toshow that U, N U, € O, we can suppose that
u,nu, . 1f xe Un U,. then x lies in an open interval Ja), o, © U and aiso in the
interval fa), byl © U,. We can write Ja;, b,[ N Ja,. by{ = ]Ja, bl where a=max(a,, a,) and b=
min(b,, b,)). Thus x e Ja,b[ © U, NU,. Hence U, n U, is the union of such intervals. so is
open. Finally, T2 is ciear by definition.

Similarly. R™ may be topologized by declaring a set to be open if it is a union of open
rectangles. An argument similar to the one just given for R shows that this is a topology, called
the standard topology on R".

The trivial topology on aset S consists of O = {3, S}. The discrete topology on S is
defined by O={A | A ©S}; ie, O consists of all subsets of S,

Topological spaces are specified by a pair (S, (3); we shall, however, simply write S if
there is no danger of confusion
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1.1.2 Definition Ler S be a topological space. A set A < S will be called closed if its
i‘ompicment S\A isopen. The collection of closed sets is denoted (.

For example, the closed interval {0, 1] © & is closed as it is the complement of the open set
#oo, O[ U ]1, oo [

‘.1.3 Proposition The closed sets in a topological space satisfy:
Cl JeCandSe C;
C2 i ALA, € Cthen AJUA, e C;
C3 rneintersection of any collection of closed sets is closed.

Proof C1 follows from T1 since @ =S\S, S=S\O. The relations

SMA,UA,)) = (S\A) n (S, and SN, _(B) = U _ (SB)

1€ 1
for {R},., afamily of closed sets show that C2, C3 are equivalent to T2, T3, respectively. M

Closed rectangles in R" are closed sets, as are closed balls, one-point sets, and spheres.
Not every set is either open or closed. For example, the interval {0, 1{ is neither an open nor a
closed set. In a discrete topology on S any set A < S is both open and closed, whereas in the
trivial topology any A# & or S is neither.

Closed sets can be used to introduce a topology just as well as open ones. Thus, if C isa
collection satisfying C1-C3 and O consisis of the complements of sets in (, then O satisfies
T1-73.

1.1.4 Definition An open neighborhood of a point u in atopological space S is an open set U
such that uwe U. Similarly, for a subset A of S, U is an open neighborhood of A if U is .
open and A € U. A neighborkood of a point (or a subset) is a set containing some open
neighborhood of the point (or subset).

Exampies of neighborhoods of x € R are x — 1. x + 23], |x - g x + ¢ forany €>0, and
R itself; only the iast two are open neighborhoods. - The set [x, x + 2| contains the point x but
is not one of its neighborhoods. In the trivial topology on a set S, there is only one neighborhood
of any point, namely S iiself. In the discrete topology any subset containing p is a neighborhood

-~

of the point p € 3, since {p} isanopznset.

1.1.5 Definition A ropological space is called first couniable if for each nwe S there is a sequence
(U, U,, ...} = (U,} of neighborhoods of v such that jor any neighborhood U of u, there is

aninteger n such that U < U. Asubset. B of O is called a basis jor the topology, if each open
set is @ union of elements in ‘B. The topology is called second countable if it has ¢ countable basis.
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Most topological spaces of interest to us will be second countable. For example R" is
second countable since it has the countable basis formed by rectangles with rational side length and
centered at points all of whose coordinates are rational. Clearly every second-countable space is
also first countable, but the converse is false. For example if S is an infinite noncountable set, the
discrete topology is not second countable, but S is first countable, since {p} is a neighborhood of
p € S. The trivial topology on S is second countable (see Exercises 1.11, 1.1] for more
interesting counter-examples).

1.1.6 Lindelof's Lemma Every covering of aset A in asecond countable space S by a family
of open sets U, (that is U' U, D A) contains a countable subcollection also covering A.

Proof Let B= (B } be acountable basis for the topology of S. For each p e A there are
indices n and o suchthat pe B, © U,. Let B’ = {Bnlthcre existsan o suchthat B <
Ua) . Now let Ua(n) be one of the U, that includes the element B_ of B’ . Since B’ is a

covering of A, the countable collection [Ua(n)} covers A. ®

1.1.7 Definition Let S be a topological space and A < S. The closure of A, denoted cl(A) is
the intersection of all closed sets containing A. The interior of A, denoted int(A) is the union of
all open sets contained in A. The boundary of A, denoted bd(A) is defined by

bd(A) = cl(A) N cl(S\ A).

By C3, cl(A) is closed and by T3, int(A) is open. Note that as bd(A) is the intersection
of closed sets, bd(A) is closed, and bd(A) =bd(S\ A) :

On R, for example, cl([0, 1) = [0, 1], int([0, 1[) =]O, 1[, and bd([0, 1[) = {0, 1}. The
reader is assumed to be familiar with examples of this type from advanced calculus.

1.1.8 Definitions A subset A of S is called dense in S .if cl(A) =S, and is called nowhere
dense if S\cl(A) is dense in S. The space S is called separable if it has a countable dense
subset. A pointin S is called an accumulation point of the set A if each of its neighborhoods
contains a point of A other than itself. The set of accumulation points of A is called the derived
setof A and is denoted by der(A). A point of A is said to be isolated if it has a neighborhood in
S containing no other points of A than itself.

Theset A=[0,1[ U {2} in R has the clement 2 as its only isolated point, its interior is
int(A) =10, 1[, cl(A)=1[0, 1} U {2} and der(A) = [0, 1]. In the discrete topology on a set S,
int{p} =cl{p} = {p}, forany pe S.

Since the set Q of rational numbers is dense in R and is countable, R is separable.
Similarly R? is separable. A set S with the trivial topology is separable sincc cl{p} =S for any
pe S. But S=R with the discrete topology is not separable since cl(A)=A forany A < S.
Any second-countable space is separable, but the converse is false; see Exercises 1.11, 1.1].
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1.1.9 Proposition Let S be a topological space and A € S. Then
(i) ue cl(A) iff for every neighborhood U of u, UN A #Q;
(i1) w e int(A) iff there is a neighborhood U of u such that U < A;
(iii) u e bd(A) iff for every neighborhood U of u, UNA#Q and UN (S\A)# .

Proof (i) ue cl(A) iff there exists a closed set C D A such that u ¢ C. But this is equivalent to
the existence of a neighborhood of u not intersecting A, namely S\C. (ii) and (iii) are proved in

a similar way. W

1.1.10 Proposition Let A,B and Aj, i€ 1 besubsetsof S.

(i) A cB implies int(A) < in(B), cl(A) < cI(B), and der(A) < der(B),

(i) S\cl(A)=int(S\ A), S\int(A) =cl(S\ A), and cl(A) = A U der(A);

(iii) cl(@) =in(D) =D, cl(S) =in(S) =S, cl(cl(A)) =cl(A) and int(int(A)) = int(A),

(iv) cl(A UB)=cl(A) U cl(B), der(A U B)=der(A) Uder(B), int(A U B) 2 int(A) U in(B);

(v) cl(A N B) € cl(A) N cl(B), der(A N B) € der(A) N der(B), int(A N B) =int(A) N int(B);

i) (U, A) 2 U cl(A, (N, A) € N cl(A),

in(U,.;A) @ U, inA), int(M,;A) € N, int(A).

Proof (i), (ii), and (iii) are consequences of the definition and of Proposition 1.1.9. Since for
each ie I, A, < U,_ A, by () cl(A) €cl(U, ;A) and hence U, cl(A) = cl(U,; A).
Similarly, since nisl 1\ C A; S cl(A)) foreach i€ I, it follows that nle[ cl(A,) is a subset of
the closet set M, cl(A); thus by (i) ci(N,; A) < cl(N,; cl(A)) = N, _; (cI(A).The other
formulas of (vi) follow from these and (ii). This also proves all the other formulas in (iv) and (v)
except the ones with equalities. Since cl(A) U cl(B) is closed by C2 arid A U B < cl(A) U cI(B), it
follows by (i) that cl(A U B) < cl(A) U cl(B) and hence equality by (vi). The formula int(A N B) =
int(A) N in(B) is a corollary of the previous forinula via (ii). W

The inclusions in the above proposition can be strict. For example, if we let A =]0,1[ and
B =[1, 2[, then one finds cl(A) = der(A) = [0, 1], cl(B) = der(B) = [1, 2], int(A) = ]0, 1,
int(B)=1]1,2[, AUB=1]0,2[, and ANB=0, and therefore int(A) U int(B) =]0,1[ U ]1, 2[
#]0,2[ =int(A U B),and c(ANB)=Q # (1} =cl(A)ncl(B). Let A =]-1/n, I/n[,n=1,
2,..; then M, A = (0}, in(A)=A, forall n,and ini( ,,A))=@ # {0} =, int(A).
Dualizing this via (ii) gives U_, cI®R\A,) = R\ {0} # R=cl(U_,,(R\A)). If A € B, there
is, in general, no relation between the sets bd(A) and bd(B). For example, if A = [0, 1] and B
= {0,2], A € B, yet we have bd(A)= {0, 1} and bd(B) = {0, 2}.

1.1.11 Definition Let S be a topological space and {u,} a sequence of points in S. The
sequence is said to converge if there is a point u € S such that for every neighborhood U of u,
there is an N such that n 2N implies u € U. We say that u convergesto u,or u is alimit

point of (u_}.
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For example, the sequence {1/n} in R convergesto 0 Itis obvious that limit points of
sequences u, of distinct points are accumulation points of the set {u }. In a first countable
topological space any accumulation point of a set. A is a hmit of a sequence of elements of A.
Indeed, if {U_} denotes the coumable collection of ncighborhoods of a e der(A) given by |
definition 1.1.5, then choosing for each n an element 2 e U NA suchthat a, #a, we see that
fa,} convergesto a. Wc have proved the following.

1.1.12 l‘mpm:(lon Let S be afirst-countable space and A © 8. Then u e cl(A) iff thereisa

seqience of points of A that converges ic u (in tne topology of S).

fushould be noted that @ sequence can be divergent and still have accumulation peints. For
example (2003720 -1/2,4/3,-2/3, ..} does not converge but has both 1 and —1 as accumulation
noints. In arbitrary topological spaces, limit points of sequences are in general not unique. For
examiple, in the trivial topology of S any sequence converges to all points of S. In order to avoid
such sitvations several separation axioms have been introduced, of which the three most important

ones will be mentioned.

L.U13 Definition A ropological space S is called Hausdorff if each two distinct points have
disjeini neighbornoods (that is, with empty intersection). The space S is called regular if it is
Hausdorfl and if each closed set and point not in this set have disjoint neighborhoods. Similarly, S
is called normal if it is Hausdorff and if each two disjoint closed sets have disjoint neighborhoods.

Most standard spaces in analysis are normal. The discrete topology on any set is normal, but
the trivial topology is not even Hausdorff. it tums out that "Hausdorff" is the necessary and
sufficient condition for uniquencss of limit points of sequences in first countable spaces (see
[Exercise 1LIE). Since in Hausdorff space single points are closed (Exercise 1.1F), we have the
imphications: normal = regular = Housdorff. Counterexamples for each of the converses of

these implications are given in Exercises 11T and 1.1].
1.1.14 Proposition A regular second-rountable space is normal.

Proof Let A and B be two disjoint closed sets in S. By regularity. for every point pe A
there are disjoint open neighborhioods L:p of p and Uy of B. Hence CI(UP) NnB=. Since
{Ui‘ |pe A} isan open covering of A. by the Lindelsf lemma (1.1.6), there is a countable
collection {U, |k =1,2...} covering A. Thus UPIU DA and cl(U)NB=0.
Simitarly, find a family {V,_} such that ngo L 2B and cl(V,)n A=0. Then the sets
p= UL AU eV, Ho= VAU gy el(Uy). Gy = U, arc open and G =

G, oA, H=U_H oB are also open and disjoint. ®

Gl
Un'c”

In the remainder of this book Euclidean n-space R"  will be understood to have the standard
topology (unless explicitly staied to the contrary).
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Exercises
1.1A Let A={(x,y,2)e R¥0<x<1 and y2+2z2 <1}. g‘ind int(A).
1.1B Show that any finite set in R" is closed.
1.1C  Find the closure of .{X/n In=1.2,.} in R.
1.1D Let A < R. Show that sup(A) e cl{A) where sup(A) is the supremum (Lu.b.) of A.
1.1IE Show that 2 first countable space is Hausdorff iff all seqquences have at most one limit point.

1.1F (i) Prove (hatin a Hausdorff space, single points are closed.
(ii) Prove that a topological space is Hausdorff iff the intersection of all closed
neighborhoods of a point equals the point itself.

1.1G  Show that in a Hausdorff space S the following are equivaleut; (i) S is regular; (ii) for
cvery point pe S and any of its nsighborhoods U, there exists a closed neighborhood V-
of p such that V € U; (iii) for any closed set A, the intersection of all of the closed
ncighborhoods of A equals A.

1.1H (i) Show that if %/ {p) denoies the set of all néighbczrhoods of p e S, then the
following are satisfied:
Vi if AU aund Ue V(p). then Az V(p):
V2 cvery finiie intersection of elements in V(p) is an element of V(p);
V3 p belongs to all elements of ‘V(p):
V4 if Ve V(p) thenthereisaset Ue V(p), U S V such that forall ge U,
Ue Y(qg).

(ii) If for cach p e S there is a family 7/ (p) of subsets of S satisfying V1-V4,
prove that there is a unique topology O on S such that for cach p e S, the family
Up) is the set of neighborhoods of p in the topology . (Hint: Prove uniquencss
first and then define elemcents of O as being subsets A © § satisfying: foreach p &
A,wehave A< V(p))

L1 Let S={p=(xy)e R?| y20} andiet Dp)={q| llg-pll<<e} denote the usual
e-disk about p in the plane R2 Definc

[ Dyp) S, if p=(x,y) withy>0
|

B:(p) = {
lk {(x,y)e D(p) |y >0} U {p}.ifp=(x, 0).



