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PREFACE

Tas study of a problem by stafistical methods usunally involves thres
stages: (1) the colleciion of material or data; (2) the mathematics! analy-
sis of the data thus collected; (3) the interprefation of resuits, {or the
particular purpose in view.

As to stage (1), the best methods of collecting data depend almost
entirely on the nature of the particular fleld of mquiry, and are not dis-
cussed in this Handbook. The same is true in regard to stegs (3); the
problems conneeted with the inferpratation of statistical results sre
necessarily very different in different felds of inquiry, and are not dis-
eussed in this Handbook, excepl as illustrations of the mathemasatical
methods involved.

The problems of atage {2), on the other hand, are in & sense common o
all fields of statistical inquiry. Whatlcver the content of the data may be,
the form of the mathematical analyeis is essentially the same. It is with
thege formal problems of mathemstical analysia that this Handbook
deals, Illustrations are taken from this or that particular field, for the
unke of concreteness; bub the general epplicability of the methods to all
fielda is congtantly borae in mind, and the ferminology throughout the
Handbook is kept a2 nou-gpecial as possible.

Specisl emphasis is iaid on the limitations surrounding the proper
application of the various methuds of analysis. Without careful atten-
tion to these limitations, the results of a statistical inquiry may be alto-
gether misleading.

Each chapter has been critically read by at least two other contributors
besides the author; but the finsl responsibility for all the chapters rests
with the individual authors.

The National Research Couneil contributed to the prepsration of the
Handbook by the grant of funds for traveling expenses incident o
roeetings of the Committee and for a small amount of clerical assist-
ance. The royalties from the book are received by the National
Research Council {o be made available, if n&ded for further work
in the field of mathematical statistics.
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CHAPTER I

MATHEMATICAL MEMORANDA
By E. V. HUNTINGTON

NUMERICAL COMPUTATION

Stide rules, tables, and computing machines. Belsre undertaking
any statistical work one should supply one’s self with svitable aids to
computation.

For three-figure accuracy, a ten-inch slide rule is very convenient.
The larger Fuller or Thacher slide rules give four, or scmetimes five,
gignificant figures. Rarlow's Tables of sguares, sguare routs, cube
roots, and reciprocals, are almost indispenwabie. The multiplication
sables are also oifen convenient. Crelie’s Tabis gives the produch of
avery three-figure number by every three-Ggure rumber. Peters’s Tabie
zives the product of every four-figure aumber by every two-figure nurn-
ber. The amaller table of H. Zimwermann gives the product of every
three-figiive number by every two-figure number.  Tables of logarithuns
of nombers, and for ceriain purposes tables of {rigonometirie functions,
are mvaluable. Four- and five-place tables exisi in great veristy. If
more than five figures are required, use Bramiker’s six-place table or pro-
ceed af once to a seven-place table: for exampie, Vega. Foxr cight
olaces use the two-volume table of Baunschinger and Faiers. Explana~
zons of the use of tablez of logarithms usually aceompany the tables
themselves ; see, {or exzmple, B. V. Huntington’s Handbook of Mcthe-
matics for Enginecrs.

I extendad work zome form of computing machinzs wiil soon pay for
itself in spite of the apparently large initial expeuse, The best-known
adding and lis'ing machines sre the Barrcughs and the Wales, with
standard keyb. ards, and the Dalwon and the Sundstrand with ten-key
keyboards. (The wide-paper form of carriage is more convenisnt for
most purposes thar the narrow-ribben type.) Among the caleulating
machines may be mentioned the Comptometer, the Burroughs non-

i
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listing machine, the Monroe calculator, the Millionaire, the Brunsviga,
the Ensign, the Mercedes-Euclid, and the Marchant. Some of these
can be operated by electricity.

For elaborate classification of large amounts of statlstlcal data, as
in the work of the Census Bureau, the Hollerith or the Powers machine
for sorting punched cards is practically indispensable.

In advanced work in statistical theory, Pearson s Tables for Statisti-
ctans and Biomelricians are invaluable.

The new Tables for Applied Mathematics, by J. W. Glover, include in
cne volume a large number of tables for finance, insurance, and statistics,
together with a seven-place table of logarithms.

Absolute and relative errors. The numerical data in a statistical
computation are usually the result of measurement, observation, or
estimate, and hence are only approximately correct. The closeness of
the approximation may be measured either by the absolute error or by
the relative error.

The absolute error is sometimes defined as the observed value minus
the true value (z; — X) and sometimes as the true value minus the
observed value (X — z;). When the distinction of sign is important,
the error ; — X may be called the deviation of the observed value from
the true value (a positive deviation being an  error'in excess,” and s
negative deviation an “ error in defect ’), while the error X — z; may
be called the correction to be applied to the observed quantity (the
correction being positive or negative according as the observed quantity
needs to be increased or decreased).

The relative error is the absolute error divided by the true value. |

For example, suppose z; = 3.06 cm. and z; = 2.97 cm. are two ap-
proximate values and X = 3.00 cm. is the true value. Then the ab-
solute error of z; is 0.06 cm. (deviation = + 0.08 em., correction =
~ 0.06 cm.) while the relative error is 0.02, or 2 per cent. Similarly, the
absolute error of z. is 0.03 em. (deviation = — 0.03 cm., correction
= -+ 0.03 cm.) while the relative error is 0.01, or 1 per cent.

The absolute error is connected with the number of decimal places,
and is important when the quantity is to be added or subtracted, or com-
pared with other quantities on an absolute basis. For example, a
measurement may be ‘‘ correct to two decimal places ”’; an estimated
population may be * correct to the nearest million,” ete.

The relative error, on the other hand,.is connected with the number
of significant figures, and is important when the quantity is to be multi-
plied or divided, or compared with another quantity on a percentage
basis. For example, a number may be said to be ¢ correct to four signifi-
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cant figures,” * correct to ‘'within 3 per cent of the value,” “ correct
within one part in 6000,” ete. .

In any statistical investigation, either the desired number of declmm _

places, or more usua!ly, the desired number of mgmﬁcant figures should
be decided upon in adva.nce, and borne constantly in mind throughout
the work.

Proplgation of error in computation. The manner in which small
errors in the data may accumulate in the course of a computation is in-
dicated as follows:

(1) In addition: Suppose, for example, that each of 20 numbers has
a possible error of half a unit in the third decimal place; then the sum
of these numbers may have a possible error of 10 units in the third
decimal place — that is, an error of 1 unit in the second decimal place.
All figures beyond the second decimal place should therefore be dis-
carded in the answer. In gemeral, one doubtful figure in any column
will render that whole column doubtful ; hence all figures to the right of
that column should be discarded in the answer.

(2) In subtraction: Two numbers may each be correct, say, to five
significant figures, and yet their difference may be correct to only one or
two significant figures; for example, 3.1416 — 3.1402 = 0.0014. Neg-
lect of this fact is a frequent source of overconfidence in regard to the
precision of 2 result.

(3) In multxphcatxon and divigion : The number of significant ﬁgures
which can be relied on in a preduct or quotient is never greater than the
number of reliable significant figures in the weakest factor.

The relative error of a produet or quotient may be as great as the sum
of the relative errors of the separate items.,

(4) In powers and roots: The relative error in the nth power of a
number is n times the relative error in the number itself. Similarly,
the relative error in V/z is only 1/nth of the relative error in z itself.

(5) In exponents and logarithms: If ¥ = ¢*, or £ = logy, then an
absolute error of say .01 in # corresponds approximately to a relative
error of .01 in 7. v

(6) In arithmetic or geometric mean: The relative error in the

arithmetic or geometric mean of a number of quantities will be approxi-
mately the same as the relative error of the individual items (greater
than the least of these relative errors and less than the greatest of them).

Rejection of superfluous figures. It is a fundamental rule of computa-~
tion that a result should never be stated to a greater degree of precision
than is justified by the data. ~All superfluous digits are misleading and
should be rejected from the result.
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If the first rejected figure is 5 or more, the preceding figure should be
increased by one; otherwise, it should be left unchanged.!

For oxample, 3.14159 reduced to four figures is 3.142. Again, 6.1257
reduced to four figures is 6.130. Note that in a decimal fraction a
final zero is as significani as any other final digit in determining the
degree of precision. But in the case of a whole number like 3140000 the
final reros leave the reader in doubt whether the number of reliable
significant, figures is 3, 4, 5, 6, or 7. This ambiguity can be removed by
writing the number in the form 3140000, or 3140000, or 3140000, etc.,
28 the case may require; or, more usually, in the form 3.14 X 109, or
3.140 X 10°% or 3.1400 X 109, etc., as the case may require,

This latter “notation by powers of 10" should always be used in the

case of very large or very emall numbers. For example,

0.000003140 = 3.140 X 10~

(Neote: In this notation, the exponent of the power of 10 is the same
as the “ characteristic ” of the logarithue of the number.)

DEFINITIONS OF VARIOUS KINDS OF MEANS OR AVYERAGES

(1) The arithmetic mean (AM) of » numbers, 1, L2,  « * Zn, is 1/nth
of their sum :

= :}-(11+$z+ <o« + 2,), OF AM=‘1'E£‘-
T ®

The AM iz whai is ordinarily meant when the term *“ mean ™ or
“ gverage ”’ is used withoui further gualification. It is related to the
center of gravity (or centroid) in mechanics, the center of gravity of
a set of n equal particles being a point whose distance from sany fixed
plane is the 4 M of the distances of the several particles fromi that plane.
It is also related to the * methed of least squares,” since the sum of the
squares of the deviations of the » numbers from any value X is a mini-
mum when X is the AM of the numbers,

In computing an AM note that adding any constant, & %, to all the
numbers has the effect of adding 4 & to their AM.

For two numbers, @ and b, the AM = i(a + b).

(2) The geometric mean (GM) of n (positive) numbers, x;, g, * * « %,
18 the nth root of their product :

G.LM xl,iz *Tut

1 A refinement of this rule is somatimes to be recommendsd, namely: if the re«
jected figures are exactly 5000 - - -, the preceding figure should be raited when it is
odd and left unchanged when it is even.
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In computing the GM of % mumbers, it is usually convenient o use the
formula :

log (GM) = ;l—l(logasl 4~ log 2o+ - + » 4 log xa), or log (GM) = -lﬁz(iogz.-),

that is, take the AM of the logarithms of the numbers, and then take
the anti-log of the result
Eor two mimmbers, e atd b, the GM is # = Vab.. This is called also
the mean proportionat hetween o and b, since
a:x = x:b. By drawing a semicircle on a™ 5 _ Y/ ‘
as diameter, the value of z ean be comstructed / zi \
geometrically, as in Figure 1. 2 b
(3) The harmonic mean ( HA) of n (positive)
numbers, zi, Xy, © © -+ T, 18 the reciprocal of the arithmetic mean of the
reciprocals of the numbers :

~

Fic. 1

- ! or L olyfly 2°%
M=t Ry la. gl ' M s"“(xi) S A
n\; L2 x;

The chief use of the HM is in aversging frequencies, 1/x being called a

frequency when z is a duration,
For example, in steamship statistics, the average number of trips
per yenr may be more significant than the average number of days spent

on each trip.

For two numbers, ¢ and b, HM = 2ab
a-+b

The AM,GM, and HM are the so-salled classieal means, known to the
Greeks, A 4

(4) The contra-harmonic mean (CHM) iz almost as old, but is of
very slight importance to-day :

Sl -l sl o AP ) 26 D 1O Yo Y
CHM = ik i S or CHM = Z(x2)/Z(xs).

(5) The root-mean-square (RMS) of n numbers, z,, Za, <+ - 2y, i

the square root of the arithmetic mean of their squares :

RMS = «J}z (& + 2 + -+ 4 29,00 RMS = 2 2(2).

The RMS is related to the radius of gyration in mechanics, the radius
of gyration of a eet of » equal particles, with respect to a given axis,
being the RMS of the radial distances of the several particles from that,
axis. In statistics, the RMS of the deviations of a sct of numbers from
their arithmetic mean is called the standard deviation (SD) of those
numbers.
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The standard deviation of 2 set of numbers is also equal to the RMS
of the differences between the numbers taken two by two; thus, if r is
the AM of the numbers, then

.. . B
8D = \/5%(&"‘ 2)t = ;\/E(zi - ;)%

where n(n — 1) /2 = the number of the differences in question.
For any positive numbers, 1 S %3 < *++ £ &g, the order of magnitude
of these five means is as follows (uniess the numbers are all equal) :
73 < HM <GM < AM < RMS < CHM < z,.

For the special case of two numbers, a and b, the fcllowing facts may
be noted :
The GM of two numbers is the GM between their HM and their AM.
The AM of two numbers is the 4M between their HM and their
CHM.
The RMS of two numbers is the G} between their AM and their
CHM.
The following general formulag, due fo Mr. R. M. Foster, may also
be noted :
M =[(zf* + z* 4 -+« 4+ z,B)/n]' %
M =Tt e gt
Eouls oo RERE
k= —o —1 0 i 2 "]
then M = =z, HM GM AM RMS =z,
“andM' = =z HM AM CHM Za

(The proof involves the evaluation of certain simple indeterminate
forms.) :

(6) The median of a set of quantities is, roughly speaking, the middle
one of the set, when they are arranged in order of magnitude (i.e. ““ ar~
rayed ’). If the number of quantities is even, and the two middle
quantities are not equal, the median is commonly taken as the number
halfway between them. More exactly, the median, in this case, is g
number X uniquely determined by the equation
(X =a)(X = @)+ (X = ar) = (@041 = X)(Oay2 =~ X) + +» (@n — X),
where @i, @y, - * - a; are the quantities of the lower half, and ax,1, Gry2,
« « » @4, the quantities of the upper half of the set. (D. Jackson, Bull.
Amer. Math. Soc., Jan. 1921.)

The sum of the absolute deviations of #» numbers from any value X
i8 a minimum when X is the median of those numbers.
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(7) The mede of a set of quaniities is that quantity which oceurs
most often (i.e. is the most fashionable), if such 4 quantity exists. Any
quantity which occurs more often thar any other quantity near it in
size may be called a relative mode (or simply a mode) of the set.

A genera! mathematical fortnula including the arithmetic mean, the
median, and the mode is due to D. Jackson and R. M. Foster: Let X be
the value of z which minimizes Z|z; — z|>. Then if p = 2, X = the
arithrmoetic mean; if p 1, im X = the median; if p + 0, lim X = the
mode. We note also that if p >0, imX = §(z; + z.), where 2z, is
the smaliest and z, the largest of the given quantities.

In the case of the median and the mode (as in the case of the AM),
adding a constant, = A, to all the numbers has the effect of adding the
game constant to the mean. (This is not true in case of the other four
tynes of means.)

The following general properties are often useful :

Tn the case of any one of the seven means, multiplying all the numbers
by a constant factor, ¢, has the effect of multiplying the mean by the
sdwe constant, ¢.  (“ Change of scale.”)

In computing the AM, GM, HM, or RMS of n numbers, it is allow-
sble, after grouping the numbers in any way, to replace each number
of any group by the corresponding mean of that group. (This is not al-
lowable in the ease of the CH M, the median, or the mode.)

Weighted means. If the given numbers 2y, 2y, - « - x4 have different
degrees of importance, as indicated by “ weights ” wy, wy, * « - w,, then
we may speak of the weighted mean of these numbers (of any one of the
seven kinds). Any kind of weighted mean of the given set of n sum-
bers i3 defined az the corresponding kind of si hple mean of a set of W
nurabers, in which z; oceurs 1w, times, x, occurs w, times, ete., and
W = w; 4wy -+ + + « + w, is the sum of the weights.

For example, the weighted arithmetic mean ie%, (wizy + was + « =
4+ waza); the weighted geometric mean is (21%12y% - « - 2,%:}V% ; ete.

The term “ weighted mean,” or “ weighted average,” used without
qualifying adjective, usuaily indicates the weighted arithmetic measn.

PERMUTATIONS AVD COMBINATIONS. THE BINOMIAL
THROREM

Permutations. The number of possible permutations or airange-
ments of n different elements ia “ % factorial”’ = nl=1.2-2-..n
Another potation is jn = n!



8 HANDBOOK OF MATHEMATICAL STATISTICS

Thus, the three letters a, b, ¢ admit 3! = 6 permutations: abe, ach,
bac, bea, cab, cba.

If among the n elements there are p equal ones of one sort, g equal
ones of another sort, r equal ones of a third sort, etc., wherep + ¢ + r +

- = n, then the number of possible permutations is

(CHFALCDICDICREEES

Thus, the four letters a, b, b, b, admit 24/[(1)(6)] = 4 permutations:
abbb, babb, bbab, bbba.

Combinafions. The number of possible combinations or groups of
n elements taken r at a time (without repetition of any element within
any one group) is .C, = —(n—-—':-;m = the coefficient of the term in z*
in the binomial expansion of (1 + z)* (Notice that ,C. = .C.—).

Thus, the five letters abede taker two at a time give ;C; = 10 combina~
tions: ab, ac, ad, ae, be, bd, be, cd, ce, de.

If repetitions are allowed within each group, then the number of
combinations of n elements taken r at a time i8 pyr1Cy.

Thus, five letters taken two at a time, repetitions allowed, give ¢C2: =15
combinations : aa, ab, ac, ad, ae, bb, be, bd, be, ce, cd, ce, dd, de, ee.

The general principle underlying the theory of permutations and
combinations is this: If we can do one thing in m ways and another
thing in # ways, then we can do both things together in mn ways.

The binomial theorem. If n is any positive integer,
(ptay=p"+ mpg + MO D ot 4 MO VOB poep g o

=p" + Cip™'q + 2Cop™ ¢ + Cop* @ + - - + ¢,
where .Cy=n0, C:=[n(n—1)]/(2!), Ci=[n(n—1)(n—2)]/31),**
Ce=[n(n—1)(n—=2) -+ (n—r+1)/(r))
are the bizemial coefficients.

Note that O == O, me — !

(n—=r)!r I.
Other notations are ,C, = (’:) = (n).
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TaBLE oF BiNoMIial, COEFFICIENTS

n 2Co aCh aCa qu nCG ) nCE nCo nCT ﬁCB uCO qu

i 1 1 5 s

2 1 2 1 »

3 1 3 3 1

4 1 4 4] 4 1 -

5 1 5 10 10 5 1 e

6 H 6 i5 20 15 6 1 -

7 1 < 21 35 36 21 7 1 -

8 1 8 28 56 70 56 28 8 1 LS

9 i 9 36 84 | 126 | 126 24 36 9 1 o8
10 5 10 45 120 | 210 | 252 | 210 | 120 45 10 1

Note that each number, plus the number on its left, gives the number
next below.

STIRLING’S FORMULA. THE BERNOULLI NUMBERS

Stirling’s formula for n factorial. The following formula gives a good
approximation to n! for large values of n:

n! = (V2mn)(n*)(e™), or, more accurately, :

: 0
n! = (V2rn)(n*)(e")(¢), where 0 < 0 < 1,
whence

log. (n!) = (n+ ) log.n — n + log, (V27) + 1’9??.’

or logi (n!) = (1 + %) log n — (434294482 n) + 39909 + '03‘;19 9,
The last term, in which 0 < ¢ < 1, indicates the degree of approxima-
tion attained. For example, if n = 1000, log, (1000!) = 2567.6046, so
that 1000! = 4.024 X 10%7,
A seven-place table of logs, (n 1) up to n = 1000 is given in Pearson’s
Tables, page 98, and in Glover’s Tables, page 482.
-+ A still more accurate approximation is

log, (n!) = {n.+ }) log. n — n+log, (VZr)
4B 1_B 1, B 1_ B 1, 0B 1

1-2n 34w "'5:6n 78w '9-107
where By = }, By = 74, B; = ¢4, -+ are the Bernoulli numbers (see
below), and 0 < 6 < 1.
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Wallis’s formula for w. Wallis’s formula (useful in connection with
the proof of Stirling’s formula) is an infinite product the limit of which
isr/2:

x 224466, ,, 2n 2n

-— —_— e = e =~ a0

2133557 2n—-12a+1

The Bernoulli numbers. The following numbers occur in the expan-
sion of many functions, such a3 tan z, see z, z/(e* — 1), ete.

B] = 1/6 Bz =1

Ba = 1/30 B( = 5

Bs = 11’42 Bc = 61

B; = 1/30 By = 1385

Bg = 5/66 B]o = 50521

By, = 691/2730 Big = 2702765

By =17/6 By, = 199360931

B = 3617/310 Bie = 19391512145

B = 43867/798 Bs = 2404870675441

By = 174611/330 By = 370371188237525

ete. ete. ° r
The numbers B;, B;, Bs, - - - are sometimes denoted by Es, E,, F, -+

or by E,, E;, E;, - <+ ; while the numbers By, B;, B;, - - - are sometimes

denoted by Bs, By, Bs,-+-orb By, Bs, By, -+ -

For recursion formula/s, see B. O. Peirce, Table of Integrals. For an
extended table, see Glover’s T'ables. For large values of n, the following
approximations are useful :

B!w—-»l s 2 sl L
@2n)t (2~ l)ar“"[ + 3"‘ 5, T
By, _ Bt 1 1 1 .
2 1:)! - w’-*"*{l T P + Swit T Jemil + . "l

1+1

+]

THE GAMMA WUNCTION
The Gamma Function of any positive number n is defined by

M{n) = F *Tevdz,
Jo

If n is a positive integer, T'(n 4~ 1) = 2!, (See Stirling’s formula, above.)
In general, T'(n + 1) = »n I'(n), so that the value of I'(r) for any posi-
tive n can be found, by successive reductions, from a table covering the
range from any integer to the succeeding mteger, as, for example, from
n = 1ton = 2. In particular,

F(0) =00, T(4)=Vr, T(1) =1, T(2) =1, I'3) =2



MATHEMATICAL MEMORANDA il

"The graph of the function is shown in Figure 2. The minimum poind
w given by I'(1.4616321) = .8856032.. Tables of the ¢
Garumas Bunciion are given in Pearson’s T'obles end in i
{(Flovss's Tables. .

The Beta Function. The Beta Funetion of say two
wositive pumbers, m snd w, is defined by

i
E(m,n) = f {1 — x)Ndz
L

oo
e

axt -]
S’

oy 59 20 S 2% T o3 G
%

g N
o § i tme A T(m]) I{n) 1284
== e (I8 n~10 o e e ._/_...i_.. i
dj;sm i} .cos #-de 7 ) Fia 2

The hypsigeometic series. The hypergsorsetric series is & function
of z involving three psramsters, @, &, «:

4 ‘ 3
}l’i;‘ " .\ e a3 3 qa+1} {)(b‘{"l) 5
(8,6, %) l‘-‘}-1- ¢ t, 1:2 ¢+ 1)Jc
aa4+ N+ + B4 4,
+ 1-2:3 e(c + Lie+ 2) *

:n._.._P C) = T wsm e—&-1 — -,
. {:@: 5 [ 41 — 1bei(L — at)edt.

GAUSS'S WORMAL ERRCR CURVE, OR PROBABILITY CURVE

Constanty of the nomual curve. The most important constants con-
nected with the nonual eurve of error are the following (see Figure 3):
%o = muximuimn ortfinate (where z = @), or height at the “ mode.”
4 == total ares, fivin 2 = — 2 $0 3 = 4+ w0, If the curveis given
by a finite number of egui-spaced ordinates, then, approxi
mately, A = N -Az, where N = total length of the ordinates
(“ toial population’), and Ar = distance between the ordi-
nates (* class interval™).
o = “gtandard deviation " or * root-mean-square error’”’ = abecisss

of point of inflection, given by
g

‘ o =
@ -i f z*ydz, or, spproximately, o = ‘\!-Z:—r}:(z‘y).

p = “ probable srvor 7 = value of the abscissa such that the area
from_x = — ptoz = 4 pis half the total aren A. Here p ==
(pV/2) 0 =0.674489749 o, where p = 0.476936276 - - - is a num-
ber defined by the equation

e



