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1. Introduction.

The Schrodinger operator with a periodic potential describes the motion of a
particle in bulk matter. Therefore, it is interesting to have a detailed analysis
of the spectral properties of this operator. Both physicists and mathematicians
have been studying the periodic Schrodinger operator for a long time !. The
most significant progress has been achieved in the one-dimensional case 2 The
two and three dimensional cases are still of great challenge.

Initially, physicists observed that the spectrum of the periodic Schrodinger
operator has a band structure and is semibounded below (see f.e.[BS, Ki, Mad,
Zi]). Moreover, according to the famous Bethe-Sommerfeld conjecture [BS] there
exist only a finite number of gaps in the spectrum. The eigenfunctions of each
band can be described as “Bloch functions”, which satisfy quasiperiodic condi-
tions in the elementary cell [Bl]. This means that they can be parameterized by
the number of the band and the quasimomentum, which is a parameter of the
quasiperiodic conditions. The eigenvalues of Bloch eigenfunctions with a fixed
quasimomentum form a discrete set.

For physical applications it is important to have a perturbation theory of the
Scrodinger operator with a periodic potential. In one-dimensional situation the
perturbation theory was constructed by Carvey D. Mc. [C1] - [C3]. However, in
many dimensional situations its construction turns out to be rather difficult, be-
cause the denseness of Bloch eigenvalues of the free operator increases infinitely
with increasing energy. Under perturbation, the eigenvalues influence each other
strongly and the regular perturbation theory does not work. The main aim of
this book is to construct perturbation formulae for Bloch eigenvalues and their
spectral projections in a high energy region on a rich set of quasimomenta. The
construction of these formulae is connected with the investigation of a compli-
cated picture of the crystal diffraction.

Another problem, considered here, is a semi-bounded crystal problem, i.e.,
the Schrodinger operator which has the zero potential in a half space and a
periodic potential in the other half space. The interaction of a plane wave with

lsee f.e. [A], [Ag], [Ar] - [DavSi], [Di] —.[DyPe], [Eal] - [GiKnTr2], [GorKapp1] - [HgHoMa],
[KargKor] - [K17], [Ki] — [Le], [Mad] — [Out], [Pav], [PavSm1] - [Rai], [ReSi4] — [SheShu], [Si2]
- [zi).

2see f.e. [Av1], [BelBovChe], [Bentl], [Bul] — [BuDm3] , [C1] - [C3], [Ea2], [Firl] - [FirKor],
[FroPav2], [GaTrl, GaTr2], [Ha)], [KargKor], [Kohn] — [LaPan], [MagWin] — [McKTr2], [Ol],
[PavSm1], [PavSm2], [ReSi4], [SheShu], [Ti], [WeKel], [WeKe2).
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a semicrystal will be studied. First, the asymptotic expansion of the reflection
coefficients in a high energy region will be obtained, this expansion is valid for
a rich set of momenta of the incident plane wave. Second, the connection of the
asymptotic coefficients with the potential will be established. Based upon these,
the inverse problem will be solved, this problem is to determine the potential
from the asymptotics of the reflection coefficients in a high energy region (a
crystallography problem).

Let us describe briefly some previous results.

I.M. Gelfand began the rigorous study of the periodic Schrodinger operator
[Gelf]. He proved the Parseval relation for Bloch waves in L2 (R™). The expansion
theorem was proved by E.Ch Titchmarsh [Ti] in the one-dimensional situation
and by F.Odeh, J.B. Keller [OdKe] in the many-dimensional case. V.L. Lidskiy
applied E.Ch Titchmarsh’s method to prove the Parseval formula in manydimen-
sional situation [Ea2]. The first rigorous proof of the fact, that the spectrum of
the periodic Schrodinger operator is the union of all the Bloch eigenvalues, cor-
responding to different quasimomenta, was given by F.Odeh, J.B. Keller [OdKe].
M.S.P. Eastam gave another proof of this fact [Eal, Ea2]. L.E. Thomas showed
that the spectrum of the operator is absolutely continuous [Th]. Wilsox C. stud-
ied analytical properties of eigenvalues as functions of quasimomenta [Wil].

The detailed investigation of the band structure is still a challenging prob-
lem. A first step in this direction was made by M. M. Skriganov [Sk1]-[Sk7]. He
gave the proof of the Bethe- Sommerfeld conjecture. He considered the operator

H=(-A'+V (1.0.1)

in Ly(R™), n > 1, where V is the operation of multiplication by a smooth
potential. M. M. Skriganov has proved the conjecture for certain n,l, including
the physically interesting cases n = 2,3,1 = 1 (the Schrodinger operator). He
developed the subtle methods of arithmetical and geometrical theory of lattices.
This makes proofs sometimes different for rational and non-rational lattices. For
example, in the case 4l > n + 1, only a proof for rational lattices is given.

Another beautiful proof of the Bethe-Sommerfeld conjecture in the dimen-
sion two, using an asymptotic of a Bessel function, was found by B.E.J. Dahlberg
and E. Trubowitz [DahTy].

However, one can suppose that Bethe and Sommerfeld were guided by the
ideas of perturbation theory for the many-dimensional case. The different ap-
proaches to the construction of this theory one can find in [FeKnTr1, FeKnTr2],
[Fri], [K4] — [K15], [Vel] — [Ve7]. As it was mentioned before, its mathematical
foundation is a complicated matter, because the denseness of Bloch eigenvalues
of a free operator (V' = 0) increases infinitely with increasing energy. The Bloch
eigenvalues of the free operator are situated very close to each other in a high
energy region. Therefore, when perturbation disturbs them, they strongly influ-
ence each other. Thus, to describe the perturbation of one of the eigenvalues, we
must study not only that eigenvalue, but also the surrounding ones. This causes
analytical difficulties, in particular, “the small denominators problem”.

The first asymptotic formula in the high energy region for a stable under
perturbation Bloch eigenvalue has been constructed for [ = 1 by O.A. Veliev
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[Vel] - [VeT]. The stable case corresponds to nonsignificant diffraction inside the
crystal. The validity of the Bethe-Sommerfeld conjecture for n = 2 and n = 3
is a consequence of this formula. The formula in [Vel] — [Ve7] reproduces the
first terms of the asymptotic behavior of the eigenvalue in the case of a smooth
potential.

The first results about the unstable case, which corresponds to a significant
diffraction inside the crystal, were obtained by J. Feldman, H. Knorrer and E.
Trubowitz [FeKnTr2] (more precisely about these results see page 16).

In our consideration the perturbation series both for an eigenvalue and a
spectral projection are constructed. The method is based on the expansion of
the resolvent in a perturbation series. The series converge for a rich set of quasi-
momenta and have an asymptotic character in the high energy region. They are
differentiable with respect to the quasimomentum and preserve their asymptotic
character. The particular terms in the series are simple and can be calculated
directly. This is the first method which works for a general class of potentials,
including potentials with Coulomb and even stronger singularities. This pertur-
bation theory is valid not only for the proof of the Bethe-Sommerfeld conjecture,
but, moreover, for the description of the isoenergetic surface. Many other phys-
ical values can be determined using these formulae. In the unstable case the
perturbation series are constructed with respect to an auxiliary operator, which
roughly describes the diffraction inside the crystal.

One of the main difficulties is to construct the nonsingular set, that is, the
set of quasimomenta for which the perturbation series converge. This difficulty
is certainly of a physical nature. Convergence of the perturbation series for an
eigenfunction shows the perturbed eigenfunction to be close to the unperturbed
one (the plane wave). This means that this plane wave goes through the crystal
almost without diffraction. But it is well known that, in fact, the plane wave
expi(k,z) is refracted by the crystal, if k satisfies the von Laue diffraction
condition (see f.e.[BS], [Ki], [Mad]):3

|k |=|k+27q|, (1.0.2)

for some q € Z3\ {0}. The refracted wave is known to be aexp(i(k + 27q, z)),
a € C. This wave interferes with the initial one exp(i(k,z)) and distorts it
strongly. This means that the perturbation series diverges if k is not far from
the planes (1.0.2). Here the question arises: does the series converge when k is
not in the vicinity of (1.0.2)? It turns out that it does, when 2/ > n. However,
it is not enough for the control of the convergence of series when 2/ < n. There
are some additional diffraction conditions arising in this more complicated case.
Another problem is that when eliminating the singular set (where the series can
diverge), we must take care that this set does not become “too extensive”. This
means that it must not include the whole set of quasimomenta which correspond
to a given erergy. We shall show that the nonsingular set is rather rich - it has
an asymptotically full measure on the isoenergetic surface of the free operator.
Geometric considerations are made in the explicit form for a smooth potential.

31n this equation we suppose a cell of periods to be unit.
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In the case of a nonsmooth potential the formulae for the nonsingular set are
less explicit, but, nevertheless, the set can be determined by a simple computer
program.

To construct the nonsingular set in the simplest case 21 > n and V € L,
we delete from the isoenergetic surface Sk of the free operator (Sk is a sphere
of radius k centered at the origin of R*, 0 < § < 1) the momenta belonging
to the (k~"+1-2%).neighborhood of the planes | k |=| k + 27q |, q € Z™ \ {0}.
In the rest of Sk the perturbation series converge and the perturbation of the
isoenergetic surface is asymptotically small in a high energy region (k — 00).

The situation becomes more complicated as soon as we lift the restriction
2l > n. When 2! < n, but 41 > n+1 and V is smooth, we have to delete from
Sk some vicinities of the planes

|k+2mm |=| k+ 2mrm +27rq |, m € Z", q € Z" \ {0}, (1.0.3)

| k + 27m |~ k. We call relations (1.0.3) the Generalized Laue Diffraction Con-
ditions. The size of the vicinity to delete depends on k and m,q. Thus, the
nonsingular set becomes less extensive than in the case 2/ > n, but neverthe-
less, it has an asymptotically full measure on Sk. From equation (1.0.3) one can
see that the formulae for the nonsingular set depend only on the periods of the
potential.

Special considerations are needed for a non-smooth potential. We introduce
the concept of the “number” of states and consider its geometrical aspects. The
nonsingular set is described in the terms of the number of states.

The situation is most complicated in the case of the Schrédinger oper-
ator. The singular set has a part which depends essentially on the potential,
even when it is smooth. To construct the nonsingular set one has to delete a
neighborhood of the surfaces:

|k +2mm |*=|k + 27(m + q) |2 +AAmq(k). (1.0.4)

Here, as before, m,q € Z3, | k+2mm |~ k. The new terms Ay, (k) are smooth
functions of k determined by the potential. For many m, Almq(k) = 0, but for
a number of m the functions AAmq(k) essentially differ from zero; they are the
perturbations of Bloch eigenvalues of the free operator in the one-dimensional
situation by some periodic potential V;. We call equations (1.0.4) the Modified
Laue Diffraction Conditions.

The case of the Schrodinger operator with a nonsmooth potential accumu-
lates all described restrictions on the nonsingular set.

In the case when t is at the diffraction surface (1.0.2), the refracted wave
arises in the crystal and there exists a splitting of the degenerated eigenvalue.
Suppose that k satisfies the von Laue condition | k |=| k + 27q | for a unique q:
it is generally known that the plane wave exp i(k, z) is refracted by the crystal
for such k. Physicists consider the refracted wave to be aexpi(k+2nq,z),a € C
(see f.e. [Ki, Mad, Zi]). The resulting wave is a linear combination of the initial
and refracted waves. The mathematical study of this problem (Chapter 2) shows
that this is a good approximation for the case 2! > n. Taking a model operator
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Hgq — which roughly accounts the refraction and splitting — as the initial operator
instead of Hy, we construct the perturbation series for ¢ near a diffraction plane.
The rigorous study of the diffraction at the Laue diffraction planes (1.0.2), in
the case of the Schrodinger operator (n = 3, = 1), shows that such simple
approximation is not sufficient any longer. We have to represent a refracted
wave as a linear combination of the waves a,, exp i(k+27nq, z), n € Z. This will
be an approximate refracted wave. It is constructed by using a model operator,
roughly describing the refraction inside the crystal. This operator has a more
complicated form than that in the case 2! > n. Taking the model operator as
the initial operator instead of Hy, we construct the perturbation series for t near
the diffraction surface.

The perturbation series near the nonsingular set and the planes of diffrac-
tion make it possible to describe an essential part of the perturbed isoenergetic
surface.

In the case of a semicrystal we consider its interaction with an incident
plane wave exp(i(k, z)). Let k belong to the nonsingular set for the whole crys-
tal. Therefore, a wave close to expi(k, z) can propagate inside the crystal. For
the wave expi(k, z) to “penetrate” actually inside the crystal, we have to elimi-
nate the interaction of the incident wave exp i(k, ) with the surface. To do this,
we have to impose more restrictions on the nonsingular set. Nevertheless, this
new nonsingular set has an asymptotically full measure on Sk. Under some new
restrictions on the nonsingular set we construct a high-order asymptotic expan-
sions of the reflected and refracted waves for k belonging to this nonsingular set.
Furthermore, we show that the relations between the asymptotic coefficients and
the potential are not very complicated. That is why one can determine the po-
tential from the asymptotic expansion of the reflected wave (only if the potential
1s known to be a trigonometric polynomial).

Now we want to describe the results more concretely. We study the opera-
tor (1.0.1) in three cases, as geometric and analytical difficulties increase:

1. 2l > n;
2.4 >n+1, (20 <n);
3 n=3l=1.

The case 2l > n is considered in Chapter 2, the case 4/ > n + 1 — in the
Chapter 3, and the case n = 3, | = 1 (the Schrodinger operator) is studied in
Chapter 4.

Let us write potential V' (z) in the form :

V(z)= ) vmexpi(pm(0),7), (1.0.5)
mezZn
where (-, ) is the scalar product in R™ and p,, (0) is a vector of the dual lattice:

Pm(0) = 27(myal?, ..., maa;t).
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The potential V is real by assumption, so v,, = v_,,. We suppose vg = 0; this
assumption does not restrict the generality of our considerations.
We consider a potential, which satisfies the condition

Yo v P m | < oo, (1.0.6)
mez=\{0}

| m|= (mf +..+ mz)l/z,

for some (3 obeying the following inequalities:

B>0 if 21 <n, n#2 (in particular, n =3,/ =1)
B>2l—n if20>n, n#2o0r 20 >3,n=2
g>1 if I<3n=2.

The potential does not need to be smooth to satisfy this condition. For example,
in the case n = 3, a function, which behaves in a neighborhood of some point z
as | z—z¢ |, ¢ < 2l, in particular, a Coulomb potential, satisfies this condition.

For the sake of simplicity we assume that the potential has orthogonal pe-
riods ay, ..., an, however all the results are valid also for non-orthogonal periods.

It was shown [Gelf, OdKe, Eal, Ea2, Th] that the spectral analysis of H
can be reduced to studying the operators H(t), t € K, where K is the unit cell
of the dual lattice,

K =[0,2ma7?) x ... x [0, 2ma;t).

The vector t is called quasimomentum. The operator H(t), t € K, acts in
L2(Q),Q =[0,a1) X ...[0,a,). Its action is described by formula (1.0.1) together
with the quasiperiodic conditions:

(L1 550y Bty BiaCiets ovss ) = EXP(B5 85 J0( &1, o 558514 085415 55 Bn) s

j=1..,n.

The derivatives with respect to z;, 7 = 1,...,n,, must also satisfy the similar

conditions.
The operator H(t) has a discrete semi-bounded spectrum A(t):

A(t) = UZZ1An(2), An(t) 2 nooo 0.
The spectrum A of operator H is the union of the spectra A(t),
A = U:EKA(t) = UnEN.tEKAn (t)
The functions A, (t) are continuous, so A has a band structure:
A=Urzi(gn, @n], gn = minAa(t), Qn = maxia(t).

The eigenfunctions of H(t) and H are simply related. If we extend the eigenfunc-
tions of all the operators H(t) quasiperiodically (see (1.0.7)) to R™, we obtain a
complete system of eigenfunctions of the operator H.



1. Introduction. 7

Let Ho(t) be the operator corresponding to the zero potential. Its eigen-
functions are the plane waves:

exp(i(p;(t), z)), j € Z", p;(t) = p;(0) +. (1.0.8)

The eigenfunction (1.0.8) corresponds to the eigenvalue p?'(t) =| p;(t) |*. Thus,
the spectrum of Hy is equal to

Ao(t) = {p}'(t)}jezn-

Using the basis of the eigenfunctions of Ho(t) one can write the matrix H(t) in
the form
H(t)mj = pA(t)0mj + vm—j, (1.0.9)

where dn; is the Kronecker symbol. Of course, the free operator is diagonal in
this basis.
Note that any k € R™ can be uniquely represented in the form:

k=p;(t), j€Z", te K. (1.0.10)

Thus, any plane wave expi(k, z) can be written in the form (1.0.8). Naturally,
we can rewrite the von Laue diffraction conditions (1.0.2) for (1.0.8) as follows:

p?(t) = p2  (t) = k¥ ¢ #0. (1.0.11)

Similarly, the Generalized von Laue diffraction conditions and the Modified von
Laue diffraction conditions can be represented as follows:

Piam(t) = PYameq(t), 4 #0, pi'(t) =k (1.0.12)

Plam(t) = Plamsq(t) + Ahmg(p;(t)), ¢ #0, pF(t) =K. (1.0.13)
We will use formula (1.0.8) for plane waves and formulae (1.0.11) - (1.0.13) for
the diffractions conditions.

In physical literature, the important concept of the isoenergetic surface of
the free operator is used (see f.e. [Ki, Mad, Zi]). It is said that a point t be-
longs to an isoenergetic surface So(k) of the free operator Hy, if and only if,
the operator Ho(t) has an eigenvalue equal to k%, i.e., there exists m € Z™,
such that p2(t) = k?. This surface can be obtained as follows: the sphere of
radius k centered at the origin of R" is divided into pieces by the dual lattice
{Pm(t)}mez~, and then all these pieces are transmitted into the cell K of the
dual lattice. Thus, we obtain the sphere “packed into the bag” K (Fig.1).
Note that the selfintersections are described by the von Laue diffraction condi-
tions (1.0.11).

Let Sy (k) C So(k). We say that S;(k) has an asymptotically full measure
on So(k) if the relation

s(51(k))

G ! (1.0.14)

holds, where s(-) is the area of a surface.
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I~

M

VvV 7

Fig.1 The isoenergetic surface of the

free operator for n=2

In Chapter 2 we consider the case 21 > n, where V is a trigonometric polyno-
mial. This simplest situation is described in order to clear up the basic method
of our considerations — the formal construction of perturbation series and the
description of the nonsingular set for which these series converge. In this chapter
we introduce the factor a, —1 < a < 1 in front of the potential, and consider
the operator:

H, = (-A) +aV, (1.0.15)

V()= Y. viexp(i(pj(0),2)), Ro<oo (1.0.16)
J€Z*,|j|<Ro
We describe the nonsingular set xo(k,d) for this case as Sg(k) \ Ao(k,d), where
Ao(k,8) is the (k~"+1-¢)-neighborhood of the selfintersections of So(k). If t €
Xo(k,d), then (1.0.11) does not hold, i.e., there is a unique j such that p}‘(t) =
k. Moreover, for all m # j:

|2 (t) — ¥ (2)| > 2% "4

This inequality means that the free operator has a unique eigenvalue k% in the
interval (k% — 2k2-n—¢ k2 4 9k2-n-$) We will prove that the nonsingular set
Xo(k, d) has an asymptotically full measure on So (k).



