OpenStep for

Enterprises

Object-Oriented
Development for -

Windows and
UNIX

Objectory and
Booch Methods

Distributed
Objects for
Client/Server
Computing

Nancy Craighill

! Includes V
3.5" Disk

OpenStep ™ for Enterprises

Nancy Craighill

Wiley Computer Publishing

John Wiley & Sons, Inc.
New York e Chichester e Brisbane ¢ Toronto e Singapore ¢ Weinheim

Publisher: Katherine Schowalter

Editor: Marjorie Spencer

Managing Editor: Frank Grazioli

Electronic Products Associate Editor: Mike Green

Text Design & Composition: Benchmark Productions, Inc.

All diagrams were created with DIAGRAM!2 by Lighthouse Design, Ltd.

Designations used by companies to distinguish their products are often claimed
as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim,
the product names appear in initial capital or ALL CAPITAL LETTERS. Readers,
however, should contact the appropriate companies for more complete informa-
tion regarding trademarks and registration.

This text is printed on acid-free paper.

Copyright © 1997 by John Wiley & Sons, Inc.

Published by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional ser-
vice. If legal advice or other expert assistance is required, the services of a compe-
tent professional person should be sought.

Reproduction or translation of any part of this work beyond that permitted by
section 107 or 108 of the 1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for permission or further informa-
tion should be addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data:
Craighill, Nancy, 1962-

OpenStep for enterprises / Nancy Craighill

p.cm

Includes bibliographical references (p.).

ISBN 0-471-30859-5 (paper : alk. paper)

1. Applicaton software--Development. 2. OpenStep. I. Title
QA 76.76.A65C73 1996
005.2--dc20 96-17988

CIP

ISBN 0-471-30859-5
Printed in the United States of America
10987654321

About the Author

Nancy Craighill is currently an independent software consultant and sometimes
technical writer. At SRI International she used Objective-C and other Stepstone
products to develop command and control systems for the U.S. Army. At the
Stepstone Corporation she developed a 2D graphics class library, and authored
the Objective-C column for the Journal of Object-Oriented Programming
(JOOP). At Sony Electronics, Inc., she prototyped two high-end video editing
systems. The first system was implemented in C++, X Windows, and Motif, and
the second was implemented in NEXTSTEP. Recently she freelanced as a techni-
cal writer for NeXT Software, and wrote portions of NeXT’s OpenStep Reference
Manual. She also contributed chapters to other books: Computer Graphics through
Object-Oriented Programming (published by John Wiley & Sons), and Applications
in Object-Oriented Programming (published by Addison-Wesley).

iii

To Sean and Lina

Acknowledgments

Thanks to NeXT Software for creating OpenStep, something worth writing about.
NeXT staff answered many questions, especially Blaine Garst and the whole Tech-
nical Publications Department. Ron Hayden provided the opportunity for me to
work with his talented staff and supported this book project in ways too numerous
to mention. However, special thanks goes to Greg Wilson who lent me his equip-
ment, schlepped my computer around, and even jumped my car in the pouring
rain.

Thanks to Ivar Jacobson for creating the Jacobson Method (OOSE) and those indis-
pensable interaction diagrams. Other Rational Software staff made individual con-
tributions. Sten Jacobson and Haakan Dyrhage reviewed the analysis and design
chapters, and Doug Earl provided expertise on the Booch Notation.

A special mention goes to my many reviewers. Vicki de Mey, Martin Fong, Bill
Hunt, Randy Knolle, and Hemang Shukla provided thoughtful reviews and criti-
cisms of the first draft. Dave Ciemiewicz, Henry McGilton, and Robert Nielson
made excellent suggestions on the final draft. Henry McGilton also contributed
immensely to the book design. Brad Cox and Kent Beck contributed to the philo-
sophical direction of the book.

Thanks to John Wiley & Sons for their patience as circumstances beyond our control
stretched this project from one to three years long. At first the topic was NEXTSTEP;
then later it became OpenStep. Since the manuscript depended highly on the soft-
ware, it became impossible to predict when the book might be published. Ironically,
the release date of OpenStep for Windows coincided with the birth of my second
child.

I couldn’t have completed this project without the support from my family, espe-
cially my husband Earl for his never ending faith and encouragement. And last but
certainly not least, my father Ernst Knolle and other family members for providing
many months of day care.

iv

Figures

Figure 2-1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 4-1
Figure 4-2
Figure 4-3
Figure 44
Figure 4-5
Figure 4-6
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9

Figure 5-10

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6—4
Figure 6-5
Figure 6-6

Plane class structure.

Waterfall Life Cycle. . .

The OO Life Cycle. ...

Example of concurrent-staged development.
Example CRC cards.

LinkManager CRC card.

Object type symbols. ...
Index-Agent-Card association diagram.

Card association diagram.

More example CRC cards.

Initial Index-Agent class diagram. ... ;
Index-Agent class diagram with control objects.
Object diagram for changing the name of an agent.

Interaction diagram for changing the name of an agent.

Object diagram for adding a collaborator.
Interaction diagram for deleting an agent.
Cards class hierarchy. .

Cards class category diagram.
Cards module diagram.
Cards process diagram.

Creating the Cards project. .

Cards project window. ...

Creating Index........... .

Adding outlets. ...

Adding actions.

Creating Index source files. ...

x1i

11
18
21
27
46
47
48
48
49
52
59
60
63
64
65
66
69
70
70
71
75
77
78
79
79
80

xii

Figures

Figure 6-7

Figure 6-8.
Figure 6-9

Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 6-14
Figure 6-15
Figure 6-16
Figure 6-17

Figure 6-18
Figure 6-19
Figure 6-20
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5

Figure 7-6
Figure A-1
Figure A-2

Figure B-1
Figure C-1

Figure C-2
Figure C-3
Figure C—4
Figure C-5
Figure C-6

Creating a ControlApp instance. .

Inspecting the File’s Owner. ...
Connecting NSApp’s delegate. ...
Creating ControlIndex.nib. ..

Creating index interface objects.

Making connections.

Modifying the main menu.

Creating agent interface objects.

First interaction diagram for adding new agents.
Second interaction diagram for adding new agents. .

Updated interaction diagram for changing the name of
an agent.

Interaction diagram for adding collaborators.
Changing the name of a collaborator. -
Creating CRC cards using the Cards application.
Adding agents using the Session object.

84
85
85
86
87
89
95
96
102
103

105
109
110
117
124

Changing the name of an agent using Distributed Objects. 128

Cards groupware class diagram.
Cards groupware object diagram.

Multiple client requests with default non-blockmg
behavior.

Changing the name of an agent using asynchronous
messages.

A Class-Resp0n51b111ty-Collaborator (CRC)
index card.

133
134

137

139

153

CRC-cards describing the responsibilities and collaborations

of Smalltalk’s Model, View and Controller.
Class structure. . N
Class icon.

Example class diagram.

Example class hierarchy.

Class utilities icon.

Dragging mechanism class diagram.

Example class categories.

154
163
176

178
178
179
180
181

Figures xiii
Fignre C-F -Objeck 00N, ounemsmmummmmammmmumsemmmse e ssrssme 182
Figure C-8 Message flow example. 184
Figure C-9 Example interaction diagram. 186
Figure C-10 Example interaction diagram showing synchronization.. .. 187
Figure C-11 Example module diagram. 188
Figure C-12 Example process diagram. 188

Table C-1
Table C-2
Table C-3
Table C—4
Table C-5

Attribute Syntax. ...
Class RelationsShips. ..o snsmmsmmmss sasasmsssiosn ws
Visibility Adornments. ...
Concurrency Types.. ... :

Synchronization Icons..................

XV

176
177
183
185
185

Preface

Goals

OpenStep is the premier object-oriented (OO)" development environ-
ment now available on Microsoft Windows, Sun Solaris and NeXT Mach
platforms. OpenStep is not just a product, as in OpenStep for Windows
sold by NeXT, but a specification of reusable classes called frameworks.
Since it is an open standard, any software manufacture can provide an
implementation of OpenStep. OpenStep is not new; it is proven technol-
ogy that evolved from NeXT’s original NEXTSTEP programming envi-
ronment for Mach which has shipped since 1989.

For software developers OpenStep provides:

Q Objective-C, a powerful hybrid OO language,
Interface Builder for building user interfaces,
Project Builder for organizing files, compiling and debugging code,

U oJu

Foundation Kit and Application Kit, several frameworks for quickly
constructing those custom applications.

Support for Distributed Objects, the ability to send messages between
processes, is implemented as an extension to the Objective-C language
and through Foundation Kit classes. NeXT has ported its Distributed
Obijects to other platforms, such as HP-UX, and now supports interoper-
ability with Microsoft OLE/COM objects and OMG CORBA implemen-
tations. Thus, your OpenStep objects can communicate with objects
across heterogeneous platforms. In addition, an add-on product from
NeXT, called Enterprise Objects Framework (EOF), provides object persis-
tency using traditional databases. All of these tools are the key to devel-
oping exciting new applications, such as hypermedia, groupware, and
authoring tools.

t To save a couple of trees, “object-oriented” is abbreviated as “OO” throughout this book.

xvii

XViil

Preffice

However, simply learning the OpenStep development tools does not
ensure success with OO technology. Yes, you can quickly build custom
applications, but without understanding the process of OO develop-
ment and using proven methods of approach, the nifty user interface
you create may just be a nice wrapper around the same old “spaghetti”
code with the same old maintenance problems.

Perhaps the first application you develop using OpenStep is successful,
but now that it is in use by real customers you are overwhelmed with
problem reports and requests for enhancements and wondering if start-
ing from scratch would be easier. Or, your first application was received
well within the company, and now your organization wants to adopt the
technology enterprise-wide, but you're having difficulty scaling up your
custom application to meet these new demands.

At this point, you might blame the environment and technology (it
hasn’t lived up to your expectations) without realizing that the environ-
ment is only one ingredient for successful OO development. Using
OpenStep for serious software development on a large scale requires
more understanding of the OO development process.

The goal of this book is to help you succeed in using OpenStep, not just
for one application, but enterprise-wide, by building suites of interoper-
able applications. OO development on a large scale requires not only
new tools, but a new philosophy about software development, new
management style, and an underlying architecture that supports
interoperability. Specifically, the goals of this book are:

Q Introduce the OO Software Development Life Cycle and different
management styles.

Teach OO analysis and design methods, notations, and techniques.
Teach OpenStep development tools and frameworks.

Provide deeper understanding and appreciation of Objective-C.

[Ry Iy

Demonstrate the power of Distributed Objects by focusing on
problems faced when designing client-server applications.

This book contains real design and code examples by developing a
theme application, called Cards, throughout. The application is an analy-
sis tool, a computerization of CRC or modelling cards, that has aspects
of both hypermedia and groupware. The design and implementation of
Cards is non-trivial, making it ideal for teaching advanced features of
OpenStep. Since Cards is an analysis tool, you can also use it when

Audience Xix

developing your own applications. The complete source code is pro-
vided on the enclosed disk so you can extend it to meet your needs.

By covering the entire OO development process and advanced features
of OpenStep, this book gives you all the necessary skills to succeed with
reuse in your organization and build interoperable systems suitable for
the new information age.

Audience

This book is suitable for computer professionals, program managers,
and students. Specific sections of the book address the process of OO
development and new management techniques. It contains in-depth
design and programming examples using OpenStep. Chapter 6—Imple-
mentation, written in tutorial style, and the source code on the enclosed
disk could be used in a software engineering course.

Organization

Chapter 1—Introduction provides “The Big Picture” of what is taking
place in the software industry today and where it is headed. It also
explains why OO technology in general, and OpenStep in particular, is
the fastest vehicle to developing next generation software.

Chapters immediately following Chapter 1 explain the process of OO
development including the OO life cycle and iteration strategies, teach
the Jacobson OO analysis and design method, and apply the Booch
notation. Chapter 5—Design introduces OpenStep classes and reusable
designs called mechanisms. Chapter 6—Implementation teaches Open-
Step development tools, frameworks, and more mechanisms. You can
implement your own version of the example application while reading
this chapter.

The final chapter, Chapter 7—Distributed Objects, ties it all together. It's
not only a goal for large enterprises to use Distributed Objects. Distrib-
uted applications, including client-server applications, require more
attention to design—you can’t just hack a distributed application
together and expect it to interoperate. OO methods and notations can

XX

Preface

really help to understand the complexity of distributed applications,
and applying these techniques produces better results.

The appendices also contain important information:

Q Appendix A—A Laboratory For Teaching OO Thinking contains a
reprint of the Beck and Cunningham paper that is used as the
requirements specification for the Cards application.

Q Appendix B—Objective-C contains a brief introduction to the lan-
guage and syntax while also explaining how messaging in Objec-
tive-C works.

Q Appendix C—Booch Lite contains a description of the Booch Nota-
tion with adaptations for Objective-C and Distributed Objects.

Q Appendix D—Class Specifications contains specifications for princi-
ple Cards classes. Use this appendix as a reference when examin-
ing the source code and extending the application.

O Appendix E—Further Reading contains references to additional
information.

Using the Book

Chapter 1 provides the background and rationale for why this technol-
ogy is so important. Chapter 2 may be skipped if you are already versed
in OO programming concepts. Chapter 3, Chapter 4, and Chapter 5, are
best read in succession and provide the foundation for the examples in
the rest of the book. Chapter 6 covers the single user, single process ver-
sion of Cards. Chapter 7 adds support for groupware, and assumes
familiarity with the Cards design, Objective-C and Booch notation, and
therefore should be read last. Read Appendix B if you are unfamiliar
with the language or want to understand how it works. Be sure to read
Appendix C if you are unfamiliar with the Booch Notation before read-
ing Chapter 5.

Conventions xxi

Conventions

This book is after all a programming book and contains many references
to programming “things,” often OpenStep specific. Therefore it is worth
mentioning some conventions used in this book.

Bold denotes words or characters that are to be taken literally. Specifi-
cally, method names; instance variables, other local and global variables,
and types will appear in bold. For example, Objective-C method names
such as setTitle:, and types such as id and int appear in bold. On the
other hand, classes, protocols, categories, notifications and exceptions
will not be emphasized but always appear capitalized, as is the Open-
Step convention.

If unspecified, a method name is always assumed to be an instance
method, otherwise the statement will be qualified as in “the init class
method.”

To improve the legibility of this book, words are sometimes coined from
class and method names. For example, the term views refers to instances
of NSView and the phrase “an object is released” implies that an object
was sent the release message.

Contents

Preface ... XV
Goals L . XV
Audience , , Xvii
Organization xvii
Using the Book ... xviii
Conventions. v xix

1. Introduction ... 1
The Software Crisis ... - 1
A Brief History ... 2
The Vision ... 3
Impact of Distributed Objects 6
The OpenStep Advantage . 7
2. OO Programming 9
Encapsulation ... 9
Inheritance 10
Polymorphism R 11
Variations ... s 12
Dynamic Binding ... : 12
Dynamic Typing ... : : 13
Late Binding ... 13
Dynamic Loading 14
Summary ... 14

vi Contents

3. The Process |
- Problems With Waterfall Life Cycle

The OO Life Cycle ...

Iteration Strategies :
Managing OO Development
Selecting a-Method. ...cuvmamumssons

Summary .

4. Analysis B
What Is OO Analysis?
The Jacobson Method

The Requirements Model ...

The Analysis Model.....c.msammms
Example: Cards Application

Problem Statement
First Iteration: Basic Functlonahty
Second Iteration: Group Collaboration

Summary

5. Design

What is OO De51gn7 e . :
The Jacobson Method B
The Booch Notation....... -
Example: Cards Application
Summary

6. Implementation =~ |
Reviewing Output of Design.

Creating the Cards Project . e

Creating the Index
Creating the Index Class
Creating ControlApp - .
Creating Controllndex ...

17
18
20
23
25
28
29

31
31

32

33
34

35

37
41
49

53

55
55
56
57
58
71

73
74
75

77
78
83
85

Contents vii

Creating Aents ... 93
Creating the Agent Class ... 93
Modifying thie Main Memil.. cosmssssmomssmsosmms I8
Creating ControlAgent ... 95

Compiling and Running the Application................. 100

Adding and Removing Agents from the Index 101

Changing the Names of Agents 105

Adding and Removing Collaborators ... 108

Deleting Agents v ST | |

Saving and Loading. 113
Testing the Application.................................... - 116
Summary . 117

7. Distributed Objects . 119
Terminology ... L 121

The Basics......... OSSO ..

Vendmg Ob]ects N « 122

How Distributed Ob]ects Work 123

Using Protocols .. ; .. 125

Avoiding Danghng References and Memory Leaks .. 126
Application Deaths ... 129

Handling Other Errors. R RSN |
Designing Client-Server Applications. ... 131
Guidelines . 132
The Need for Concurrency Control . 136
Asynchronous Messages ... 138
Setting Time-outs 140
Using Independent Conversation Queues 141
Object Locking . R 142
Security ISSU€S ... 145
Accessing the Root Object 146
Authentication. ... s SR .. 146
EX@rcise. ... 148

Summary .. 148

