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Preface

Goals

OpenStep is the premier object-oriented (OO)" development environ-
ment now available on Microsoft Windows, Sun Solaris and NeXT Mach
platforms. OpenStep is not just a product, as in OpenStep for Windows
sold by NeXT, but a specification of reusable classes called frameworks.
Since it is an open standard, any software manufacture can provide an
implementation of OpenStep. OpenStep is not new; it is proven technol-
ogy that evolved from NeXT’s original NEXTSTEP programming envi-
ronment for Mach which has shipped since 1989.

For software developers OpenStep provides:

Q  Objective-C, a powerful hybrid OO language,
Interface Builder for building user interfaces,
Project Builder for organizing files, compiling and debugging code,

U oJu

Foundation Kit and Application Kit, several frameworks for quickly
constructing those custom applications.

Support for Distributed Objects, the ability to send messages between
processes, is implemented as an extension to the Objective-C language
and through Foundation Kit classes. NeXT has ported its Distributed
Obijects to other platforms, such as HP-UX, and now supports interoper-
ability with Microsoft OLE/COM objects and OMG CORBA implemen-
tations. Thus, your OpenStep objects can communicate with objects
across heterogeneous platforms. In addition, an add-on product from
NeXT, called Enterprise Objects Framework (EOF), provides object persis-
tency using traditional databases. All of these tools are the key to devel-
oping exciting new applications, such as hypermedia, groupware, and
authoring tools.

t To save a couple of trees, “object-oriented” is abbreviated as “OO” throughout this book.

xvii
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However, simply learning the OpenStep development tools does not
ensure success with OO technology. Yes, you can quickly build custom
applications, but without understanding the process of OO develop-
ment and using proven methods of approach, the nifty user interface
you create may just be a nice wrapper around the same old “spaghetti”
code with the same old maintenance problems.

Perhaps the first application you develop using OpenStep is successful,
but now that it is in use by real customers you are overwhelmed with
problem reports and requests for enhancements and wondering if start-
ing from scratch would be easier. Or, your first application was received
well within the company, and now your organization wants to adopt the
technology enterprise-wide, but you're having difficulty scaling up your
custom application to meet these new demands.

At this point, you might blame the environment and technology (it
hasn’t lived up to your expectations) without realizing that the environ-
ment is only one ingredient for successful OO development. Using
OpenStep for serious software development on a large scale requires
more understanding of the OO development process.

The goal of this book is to help you succeed in using OpenStep, not just
for one application, but enterprise-wide, by building suites of interoper-
able applications. OO development on a large scale requires not only
new tools, but a new philosophy about software development, new
management style, and an underlying architecture that supports
interoperability. Specifically, the goals of this book are:

Q  Introduce the OO Software Development Life Cycle and different
management styles.

Teach OO analysis and design methods, notations, and techniques.
Teach OpenStep development tools and frameworks.

Provide deeper understanding and appreciation of Objective-C.

[ Ry Iy

Demonstrate the power of Distributed Objects by focusing on
problems faced when designing client-server applications.

This book contains real design and code examples by developing a
theme application, called Cards, throughout. The application is an analy-
sis tool, a computerization of CRC or modelling cards, that has aspects
of both hypermedia and groupware. The design and implementation of
Cards is non-trivial, making it ideal for teaching advanced features of
OpenStep. Since Cards is an analysis tool, you can also use it when
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developing your own applications. The complete source code is pro-
vided on the enclosed disk so you can extend it to meet your needs.

By covering the entire OO development process and advanced features
of OpenStep, this book gives you all the necessary skills to succeed with
reuse in your organization and build interoperable systems suitable for
the new information age.

Audience

This book is suitable for computer professionals, program managers,
and students. Specific sections of the book address the process of OO
development and new management techniques. It contains in-depth
design and programming examples using OpenStep. Chapter 6—Imple-
mentation, written in tutorial style, and the source code on the enclosed
disk could be used in a software engineering course.

Organization

Chapter 1—Introduction provides “The Big Picture” of what is taking
place in the software industry today and where it is headed. It also
explains why OO technology in general, and OpenStep in particular, is
the fastest vehicle to developing next generation software.

Chapters immediately following Chapter 1 explain the process of OO
development including the OO life cycle and iteration strategies, teach
the Jacobson OO analysis and design method, and apply the Booch
notation. Chapter 5—Design introduces OpenStep classes and reusable
designs called mechanisms. Chapter 6—Implementation teaches Open-
Step development tools, frameworks, and more mechanisms. You can
implement your own version of the example application while reading
this chapter.

The final chapter, Chapter 7—Distributed Objects, ties it all together. It's
not only a goal for large enterprises to use Distributed Objects. Distrib-
uted applications, including client-server applications, require more
attention to design—you can’t just hack a distributed application
together and expect it to interoperate. OO methods and notations can



XX

Preface

really help to understand the complexity of distributed applications,
and applying these techniques produces better results.

The appendices also contain important information:

Q  Appendix A—A Laboratory For Teaching OO Thinking contains a
reprint of the Beck and Cunningham paper that is used as the
requirements specification for the Cards application.

Q  Appendix B—Objective-C contains a brief introduction to the lan-
guage and syntax while also explaining how messaging in Objec-
tive-C works.

Q  Appendix C—Booch Lite contains a description of the Booch Nota-
tion with adaptations for Objective-C and Distributed Objects.

Q  Appendix D—Class Specifications contains specifications for princi-
ple Cards classes. Use this appendix as a reference when examin-
ing the source code and extending the application.

O  Appendix E—Further Reading contains references to additional
information.

Using the Book

Chapter 1 provides the background and rationale for why this technol-
ogy is so important. Chapter 2 may be skipped if you are already versed
in OO programming concepts. Chapter 3, Chapter 4, and Chapter 5, are
best read in succession and provide the foundation for the examples in
the rest of the book. Chapter 6 covers the single user, single process ver-
sion of Cards. Chapter 7 adds support for groupware, and assumes
familiarity with the Cards design, Objective-C and Booch notation, and
therefore should be read last. Read Appendix B if you are unfamiliar
with the language or want to understand how it works. Be sure to read
Appendix C if you are unfamiliar with the Booch Notation before read-
ing Chapter 5.
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Conventions

This book is after all a programming book and contains many references
to programming “things,” often OpenStep specific. Therefore it is worth
mentioning some conventions used in this book.

Bold denotes words or characters that are to be taken literally. Specifi-
cally, method names; instance variables, other local and global variables,
and types will appear in bold. For example, Objective-C method names
such as setTitle:, and types such as id and int appear in bold. On the
other hand, classes, protocols, categories, notifications and exceptions
will not be emphasized but always appear capitalized, as is the Open-
Step convention.

If unspecified, a method name is always assumed to be an instance
method, otherwise the statement will be qualified as in “the init class
method.”

To improve the legibility of this book, words are sometimes coined from
class and method names. For example, the term views refers to instances
of NSView and the phrase “an object is released” implies that an object
was sent the release message.
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