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Preface .

This book is an attempt to present, in an ordered manner, the theory of dynaxmcs
(actually, also of statics) of fluids in porous media, as applicable to many disciplines
of science and engineering. For some years I have taught courses on flow through
porous media, and have treated this subject as a part of other courses, such as ground
water hydrology, while at the Technion—Israel Institute of Technology, at M.L.T.
where I spent my sabbatical leave (1966-7), and at several other institutions. I have
felt the lack of a suitable textbook on this subject. Ideally, such a text should start
from first principles of fluid mechanics and mecha.mcs of continua, should show the
passage from the microscopic to the macroscopic level of treatment, should emphasize
the special features of porous media, establish the macroscopic theory and then show
how it is applied to cases of practical interest.

It is rather surprising that in spite of its 1mportance in many helds of practical .
interest, such as petroleum engineering, ground water hydrology, agricultural
engineering and soil mechanics, so small number of treatises is available on fluids
in porous media. This circumstance is even more surprising in view of the vast amount
of literature published on the subject in a number of scientific and engineering
joyrnals. Although dynamics of fluids in porous media could become an interesting
interdisciplinary course éerving‘sevéral departments, I believe that the relatively
small number of courses offered by universities on the subject is due in part to lack
of a suitable textbook. To overcome this lack I prepared notes for my own classes,
which I present here in the form of a book, hoping that it will serve others in a
similar situation.

- The. book is designed primarily, for advaneed undergraduate studmts and for
graduates in fields-such as ground water hydrglogy, soil mechanies, soil physxes, .
drainage and irrigation engineering, sanitary engmeermg. petrolenm enginsering and
chemical engineering, where flow through porous media plays a fundamental role.
The book, I hope, will also serve the needs of scientists and engineers already active
in these fields, who require a sound theoretical basis for their weork.: The emphasis in
this book is on understanding the microscopic phenomena occurring in porous media
and on their macroscopic description. The reader is led to grasp the meanings of the
various parameters and coefficients appearing in the macroscopic descriptions. of
problems of flow through pordits media, and their actual determination, as well as
the limitations and approximations inherent in their description. In each case, the
objective is to achieve a clear formulation of the flow problem considered and a
complete mathematical statement of it in terms of partial differential equations
and a set of initial and boundary conditions. Once a flow problem is stated properly
in mathematical terms, three methods of soluticn are possible in principle:- analytic
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solution, numerical solution aided by high speed digital computers and solution by
means of laboratory models and analogs. All three tools are described in this book.
Typical examples of analytic solutions are scattered throughout the book, but no
attempt is made to f)resent a collection of a large number of solved problems. The
principles of the numerical method of solution are presented, and a detailed descrip-
tion is given of laboratory models and analogs, their scaling and applications.

Mathematics is employed extensively and the reader is expected to have a good
background in advanced engineering mathematics, including such subjects as vector
analysis, Cartesian tensor analysic, partial differential equations and elements of the
theory of functions.

No attempt is made to- give a complete citation of all pubhshed literature or to

indicate the first author-on a particular subject. References selected for citation
are those I think represent a more important point of view, are more appropriate
from the educational. point of view or are more readlly avalla,ble for the average
reader. i : :
Obviously a single book, even of this size, cannot iriclude everything related to the
subject treated. Although we consider porous media in general, the discussion is
limited to media with relatively large pores, thus exchuding clays and media with
micropores or colloidal-size particles. Similarly, chemical and electrochemical surface
phenomena are excluded. The discussion is restricted to Newtonian fluids.

With these objectives and limitations in mind, the book starts with examples of
two important péz_'ous media: the ground water aquifer and the oil reservoir. An
attempt is-made to define porous media, and the continuum approach is introduced
as a tool for treating phenomena in porous media. This requires the definition of a
“representative elementary volume’ based on the definition of porosity:. Chapter 2
includes a summary of some impertant fluid and porous media properties. In chapter
3, the concepts of pressure’and piezometric hedd are introduced. Chapter 4 starts with
the definition of velocities and fluxes in a fluid continuum. Then the equations of
conservation of mass, momentum and energy in a fluid continuum- are presented,
and using a porous medium conceptual model these equations are averaged to obtain
the basic equations that describe flow through porous media: the equations of
volume and mass conservation, including the equation of mass conservation of a
species in solution (also called the equation of hydrodynamic dispersion), and the
motion equation for the general case of an anisotropic medium and inhomogeneous
fluid. Although the basic equations of motion and of mass conservation are developed
from first principles in chapter 4, chapters 5 and 6 return to- these topics, disctissing
them ffom a different point of view, perhaps more suitable for the reader who is
less versed in fluid mechanics. Chapter 5 presents the equation of motion, starting
from its original one-dimensional form (as suggested by Darcy on the basis of exper-
iments), and extending it to three-dimensional flow, compressible fluids and aniso-
tropic media. This chapter also contains a review of theoretical derivations of
Darcy’s law. My objectives-in'presenting this and similar reviews is to indicate
research methods, such as the use of conceptual and statistical models. A section on
the motion equation at high Reynolds numbers is also included.



In chapter 6, the control volume approach is introduced as a general tool for
developing mass conservation equations. Special attention is devoted to deformable
media.: Alsoincluded in this chapter is the stream function and its relationship to the
piezometric head. Once the continuity or mass conservation equations have been
'established, the next natural step is to consider: the initial and boundary conditions.
These are discussed in detail in chapter 7. Special attention is given to the phreatic
surface boundary condition and to its description in the hodograph plane. The second
.part of this chapter contains a dlscussmn on various analytlc and numencal solation
“téchniques. s St : ‘

. Upon reaching this- pomt the réader-shiould be able to state a problem-of flow
through porous media in terms of an appropriate partial differential equation and
a set of initial and boundary conditions. . He should also know the major methods
-of solution (analog solutions are ‘discussed in chapter 11).

" Chapter 8 deals with' the problem of flow in unconfined aquifers. ‘This is.a problem
often encountered in ground water hydrology and in drainage. The Dupuit assump-
tions are-explained and employed to derive the continuity equations for unconfined
flow." The hodograph method, as a tool for solving two-dimensional, steady phreatic
flow problems, is discussed in detail with many exarhples. Several linearization
techniques and solutions of the nonlinear equation of unconfined flow are also
présented in. this chapter.

In chapter 9 the discussion, hitherto confined to single-phase flow, is extended
to polyphase flow in porous media, a topic of special interest in petroleum engineering.
Starting from the fundamental concepts of saturation, capillary pressure and relative
permeability, the motion and continuity equations are established. The case of
unsaturated flow as treated by soil physicists is presented as a special case of flow
of immiscible fluids, where one of the fluids—the air—is stationary and at constant
pressure. Special cases of interest, dealing with infiltration into soils, are considered
in more detail. A new concept is introduced: that of an abrupt interface as an
approximation replacing the actual transition zone that occurs between two fluids,
whether miscible or immiscible. A detailed discussion is presented on the coasta.l
interface, of great interest to ground water hydrologists.

Chapter 10 deals with hydrodynamic dispersion. Again, although the fundamental

- equation is developed from first principles in chapter 4, a review of several other
theories leading to this equation is presented. Special attention is given to the
coefficient of dispersion and its relationship to matrix and flow characteristics. A
section on heat and mass transfer completes the discussion on hydrodynamic dlsper-
sion. _

Chapter 11 presents the use of models and analogs, both as research tools and as
tools for solving boundary value problems. Following the presentation of a general
method for deriving analog scales, a detailed description is given of the sand box
model, the electric analogs of various types, the Hele-Shaw analogs and the membrane
analog. Recommendations for application are indicated in each case.

In brief, this is the subject matter I have chosen to cover in this book. I have made
an effort to present the information in such a way as to require a minimum of supple-



mentary material, except for those who wish to dig more deeply into the sub]ect
A large number of problems and.exercises is included in this book. '

I-should like to express my appreciation to the many individuals who; throngh
their comments and eriticism, have contributed to the completion of this book.
Special thanks are due to-Dr:.Y. Bachmat, Dr. C. Braester, Mr. E. A.: Heféz and
E. Goldshlager, for the:help they haye given- me in: teading, discussirig and eon-
structively criticizing the draft. Thanks aré slso due to the: Department of Civil
Engineering at M.1.T., andéspecially to Professer: C.L. Miller, head of the department,
Professor A. T. Ippen-and Professor D. R. F. Harleman, who made it possible for
me to write a large part of this bmk whrlt spmdmg a most fruitful yedr as a vmtlng
professor at MLT. & ; .

* The heaviest burden mWﬁVed' in wnting thas book was bome by my: wufe, S:ona,
who had to put up with’ ﬁle Hiany inconveniences that are unavoidable when bne is
engaged in writing a. book. -For her constant mmgement to me thmnghont the
various stages ‘of ‘writing,:my. “hearty mtltudse

I realize that an attempt, to represent a- systemaﬁc aocount of a theory, such as
I have made here, is bound to-have defects, I will aecept with gratxbude all readers’
suggestions directed toward: the tmprovement of this book. : .

N}

B O

Haxfa Israel Jacob Bea.r ' -
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