Lecture Notes In

Mathematics

Edited by A. Dold and B. Eckmann

1367

Manfred Knebusch

Weakly Semialgebraic Spaces

W/ SpringerVerlag




Lecture Notes In
Mathematics

Edited by A. Dold and B. Eckmann

1367

Manfred Knebusch

Weakly Semialgebraic Spaces

SpringerVerlag
Berlin Heidelberg New York London Paris Tokyo



Author

Manfred Knebusch
Fakultat fir Mathematik, Universitat Regensburg
8400 Regensburg, Federal Republic of Germany

Mathematics Subject Classification (1980): 14G 30, 54E99, 54E60, 55Q05,
55N 10, 55N 20, 55P05, 55P 10

ISBN 3-540-50815-5 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-50815-5 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1989
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2146/3140-543210



Introduction

This is the second in a chain of (hopefully) three volumes devoted to
an explication of the fundamentals of semialgebraic topology over an
arbitrary real closed field R. We refer the uninitiated reader to the
preface of the first volume [LSA]‘I and some other papers cited there
to get an idea of the program we have in mind with the term "semialge-

braic topology" as a basis of real algebraic geometry.

Let us roughly recall what has been achieved in the first volume and
where we stand now.

As we explained in [LSA], the "good" locally semialgebraic spaces,
which fortunately seem to suffice for most applications, are the regu-
lar paracompact ones. These are precisely those locally semialgebraic
spaces which can be triangulated (I.4.8 and II.4.4)2. Moreover, any
locally finite family of locally semialgebraic sets in such a space
can be triangulated simultaneously (II.4.4). This fact seems to be the

key result for many proofs in [LSA].

We accomplished less work on the triangulation of locally semialgebraic
maps. Here our main result has been the triangulability of finite maps
(IT.6.13). Much more can probably be done, as is to be expected by

the book [V] of Verona, but we do not pursue this line of investigation
in the present volume. {Verona works over IR and uses transcendental

techniques. }

1 cf. the references

2 This refers to Example 4.8 in Chapter I and Theorem 4.4 in Chapter II
of [LSA]. The main body of this volume starts with Chapter IV. The
signs I, II, III refer to the chapters of [LSA].
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On the other hand we obtained in Chapter II of [LSA] a fairly detail-
ed picture of the various possibilities how to "complete" a regular
paracompact space M, i.e. to embed M densely into a partially complete
regular paracompact space. Partial completeness is a typical notion
of semialgebraic topology which has no counterpart in classical topo-

lOgY, ck. I, §6.

In Chapters I and II of [LSA] we also obtained basic results on the
structure of locally semialgebraic maps. But the theory of fibrations
and covering maps (= Uberlagerungen) had to be delayed since a certain
amount of homotopy theory is needed here, not yet available in the

first two chapters.

Some of that homotopy theory has been presented in the last Chapter III
of [LSA]. Our central result there are the two "main theorems" in
various versions (III.3.1, 4.2, 5.1, 6.3, 6.4). As a consequence of
these theorems all the homotopy groups and various homotopy sets in
the category of regular paracompact spaces over R are "equal" to homo-
topy groups (resp. sets) in the classical topological sense of such
spaces over IR. This opens the possibility to transfer a considerable
amount of classical homotopy theory to the locally semialgebraic sett-

ing, as has been illustrated in Chapter III by several examples.

The homotopy theory in [LSA] seems to be sufficient for studying
(ramified) coverings of regular paracompact spaces. To some extent it
also gives access to the theory of fibrations and fiber bundles for
such spaces (although here something remains to be desired, see below).
Nevertheless this homotopy theory has serious deficiencies compared
with classical (= topological) homotopy theory, and this brings us to

the contents of the present volume.



The main deficiencies are the following.

1) In the category LSA(R) of regular paracompact locally semialgebraic
spaces over R we do not have infinite CW-complexes at our disposal.

2) In LSA(R) we do not have mapping spaces Map(X,Y) and prominent sub-

spaces of them, as for example loop spaces (X , at our disposal.

One main goal in the present volume is to explain how the first defi-
ciency can be overcome. We will construct "semialgebraic" CW-complexes
over the field R. A CW-complex over R is a ringed space over R [LSA,
p. 3] which is a suitable inductive limit of "polytopes" over R, to-
gether with a cell structure. Such inductive limits will generally be

called "weak polytopes". (We briefly alluded to these spacec at the

end of III, §6 and in [DK6].) By a polytope over R we simply mean a
complete affine semialgebraic space over R. This terminology is justi-
fied since these spaces are precisely all ringed spaces over R which
are isomorphic to the underlying semialgebraic space of some closed
finite simplicial complex over R, hence isomorphic to the union of

finitely many closed simplices in some R".

We have to be careful which inductive systems of polytopes we admit in
building weak polytopes. This is a delicate problem. If we are too
restrictive then our weak polytopes will not be useful. On the other
hand, if we are too permissive then we are in danger that our inductive
limits become too wild spaces. (Recall that every real closed field
different from IR is totally disconnected in the topological sense.)
Working in the category of ringed spaces over R gives us control which
continuous functions we admit on a given space, and this gives us con-

trol on connectedness and other geometric properties implicitly.

Once we have defined weak polytopes in the right way and have estab-

lished the basic properties of these spaces it will be an easy matter
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to define cell structures on some of them, which will be our CW-com-
plexes. Then the door is open to transfer a really big amount of
classical homotopy theory to the semialgebraic setting. In particular
we can define spectra, in the sense of algebraic topology, and general-
ized homology and cohomology theories over R, and we can work with

them nearly as easily as in classical homotopy theory (cf. Chapter VI).

Although the category of weak polytopes suffices to deal with infinite
CW-complexes it is technically advisable to work in a slightly broader

category, the category WSA(R) of "weakly semialgebraic spaces" over R.

These spaces are inductive limits of affine semialgebraic spaces in-
stead of just polytopes. For example, an open subspace (in the sense
of locally ringed spaces) of a weak polytope is a weakly semialgebraic
space, but usually is not a weak polytope. It would be cumbersome to
exclude open subspaces of weak polytopes from our considerations.

WSA (R) contains the category LSA(R) of regular paracompact locally

semialgebraic spaces over R as a full subcategory.

The morphisms between weakly semialgebraic spaces will be called weakly

semialgebraic maps. In Chapter IV we give the definition and basic

properties of weakly semialgebraic spaces and maps. The key result for
later use seems to be that in the category WSA(R) a space M can be

glued to another space N along any closed subspace A of M by a "partial-
ly proper" weakly semialgebraic map £ : A » N (Theorem IV.8.6). An
analogous result had been proved in II, §10 within the category LSA(R)
for proper maps. But the class of partially proper maps is much bigger
than the class of proper maps and more useful (cf. I, §5-§6 and IV, §5
below). Most important, if the space M above is a weak polytope then
also A is a weak polytope and every weakly semialgebraic map f : A » N

is partially proper.
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In general a weakly semialgebraic space M cannot be triangulated. But
M still is isomorphic to a "patch complex". This is a very weak sub-
stitute of a simplicial complex which nevertheless is sufficient for

some homotopy considerations.

Roughly one obtains a patch complex if one work with arbitrary affine
semialgebraic spaces instead of simplices. The theory of patch complexes
and their use in homotopy theory is displayed in Chapter V. Also some
applications to open coverings (= Uberdeckungen) of weakly semialge-

braic spaces are given in V, §3.

Chapter V reveals that weakly semialgebraic spaces are beautiful from
a homotopy viewpoint. For example, the two main theorems on homotopy
sets from Chapter III in [LSA] extend to these spaces (V, §5) and
there holds a strong "Whitehead theorem", stating that every weak
homotopy equivalence is a genuine homotopy equivalence (Th. V.6.10).
It is this chapter where the reader, having mastered the foundational
labours of Chapter IV, will find out that weakly semialgebraic spaces
are easy to handle and in some sense better natured, since "tamer",

than topological spaces.

On the other hand, from a more geometric viewpoint, weakly semialge-
braic spaces can be ugly. We shall demonstrate this in IV, §4 and

Appendix C by rather simple examples. Various nice geometric proper-
ties we are accustomed to from locally semialgebraic spaces, as for
instance the curve selection lemma, fail for these spaces. We do not
know whether a weakly semialgebraic space M can be completed, i.e.

densely embedded into a weak polytope. We do not know either whether
M contains a weak polytope which is a strong deformation retract of
M. In contrast to locally semialgebraic spaces there does not always

exist a space N over the field Ro of real algebraic numbers such that
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M is isomorphic to the base extension (cf. IV, §2) N(R) of N (cf. end
of IV, §4). But still we can prove (V, §7) that M is homotopy equiva-
lent to such a space N(R), even with N a CW-complex over RO. Much la-
ter, in Chapter VII, §7, we shall see that M is homotopy equivalent to

a closed simplicial complex.

Under the mild restriction that the base field R is sequential, i.e.

R contains a sequence of positive elements converging to zero, things
are even better. Then there exists, for every weakly semialgebraic
space M over R, a canonical homotopy equivalence Py P(M) - M with

P (M) a weak polytope. The space P(M) will be defined in Chapter IV, §9.
It has the same underlying set as M but a "finer" space structure than

M. On the set theoretic level, is just the identity of M.

Pm
The space P(M) is the inductive limit of the system of all polytopes
contained in M. It seems to be a very natural "simplification" of the
space M (simplification for some purposes). If M is locally semialge-
braic and locally complete then P (M) coincides with the space Mloc
defined in T, §7. But already if M is a semialgebraic subset of some

R™ which is not locally closed in R" then P(M) is not locally semialge-

braic.

More generally, given a weakly semialgebraic map £ : M » N, we shall

define in IV, §10 a weakly semialgebraic space P_(M) together with a

f(
weakly semialgebraic map P : Pf(M) - M (if R is sequential) which has
the following universal property. The map f e Pe is partially proper,
and every weakly semialgebraic map q : L » M with f o g partially
proper factors uniquely through Pg- If N is the one-point space then

P.(M) = P(M).

£

These spaces Pf(M), and in particular the spaces P(M), will do
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good service in homotopy theory at various places. They are typical for
the somewhat different flavour of semialgebraic homotopy theory compar-

ed with classical homotopy theory.

A particularly good instance to see how the spaces Pf(M) and similar
ones can be used and how the various techniques we have developed in
Chapters IV and V fit together is the proof of Theorem V.6.8 on d-
equivalences (instead of just weak homotopy equivalences) which pre-
cedes and implies the Whitehead theorem mentioned above. The reader
cannot do better than trying to obtain an impression of the main lines
of this proof at an early stage in order to get a good feeling for the

subject.

Of course, we try to proceed in semialgebraic homotopy theory as much
as possible in a way parallel to the classical topological homotopy
theory, as long as this is advisable. Here there comes up a dichotomy

of goals and methods everyone working in this area will face.

On the other hand, one would like to obtain results in the semialge-
braic theory by transfer from the topological theory, as already exer-
cised in Chapter III. One wants to have available the enormous body
of results of topological homotopy theory in the semialgebraic setting

without much further labour.

On the other hand, there is a more radical viewpoint, to the best of
my knowledge first expressed by Brumfiel in his book [B]: One should
do algebraic topology from scratch over an arbitrary real closed field

in such a way that the field IR does not play any special role.

This is an ambitious program. While writing this volume I somewhat

oscillated between the two viewpoints. Whenever the semialgebraic



geometry was easy 1 avoided transfer principles. When not I gave pre-
ference to the first view point, but often I also tried to indicate

how things can be done in the spirit of the second one.

Long passages in Chapter V may nourish the conviction that a homotopy
theory in the sense of Brumfiel is already at hands. But there are still
problems to be settled. As a testing ground I have chosen here - as
already in [LSA], Chapter III - the homotopy excision theorem of
Blakers and Massey. In topology there exists an elementary proof of

this theorem going back to Boardman, cf. [DKP, p. 211ff]. This proof

(as well as the proof of Blakers and Massey) strongly uses the axiom

of Archimedes in the field of real numbers. We are able to prove the
analogue of the theorem for weakly semialgebraic spaces (V, §7), but

for that we need the Blakers-Massey theorem for topological CW-com-

plexes and transfer techniques.

The homotopy theory developed in Chapter V suffices for studying
generalized homology and cohomology groups of pairs of weakly semial-
gebraic spaces. {The word "generalized" means that we do not insist on
the Eilenberg-Steenrod dimension axiom.} In Chapter VI we define gener-
alized homology and cohomology theories on the category P(2,R) of

weak polytopes over R in full analogy to the definition of such theo-
ries on the category #M(2) of pairs of topological CW-complexes [w2]

(or [W], [Sw], etc.). We then explicate how every topological homology
theory h, or cohomology theory h* on #)(2) leads in a natural way to a
homology theory respectively cohomology theory on 2(2,R) which we denote
again by h, resp. h*. We thus obtain a bijection, up to natural equi-
valence, between the homology and cohomology theories on #(2) and on
P(2,R) for R fixed (VI, §2-4). We extend these theories in VI,§5 from P(2,R)
to the category WSA(2,R) of pairs of weakly semialgebraic spaces over R, and

we prove in VI, §6 a fairly general excision theorem for the groups hn (M,A)
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and hn(M,A). We also describe the theories hx and h* by spectra as one

does in topology (VI, §8).

In this whole business it is important that we have weakly semialge-
braic spaces at our disposal instead of just locally semialgebraic
spaces. We mentioned already the need for infinite CW-complexes. But
even suspensions pose a problem. They play an essential role in gener-
alized homology theory, of course. Unfortunately we do not have suspen-
sions for arbitrary weakly semialgebraic spaces but only for weak poly-
topes. This turns out to be sufficient. But if M is a locally semi-
algebraic (pointed) weak polytope then usually the suspension SM will

not be locally semialgebraic.

If h, is one of the prominent homology or cohomology theories in topo-
logy, as singular homology, singular cohomology, orthogonal, unitary,
or symplectic K-theory, one of various cobordism theories, then there
remains the important task to attach a geometric meaning to the ele-
ments of hn(M,N) or hn(M,A) for (M,A) a pair of weakly semialgebraic
spaces. {In topology usually such a meaning is inherent in the defini-

tion of these groups.}

In the next volume [SFC] we shall solve this problem for the K-theories
mentioned above. In the present one we solve it for ordinary homology
H, (-,G) and ordinary cohomology H* (-,G) with coefficients in some abe-
lian group G. These are those homology and cohomology theories which
fulfill the Eilenberg-Steenrod dimension axiom. They arise from topo-

logical singular homology and cohomology theory with coefficients in G.

We prove in VI, §3 that if (M,A) is a pair of CW-complexes then the
groups Hn(M,A;G) and Hn(M,A;G) have a description by cellular chains
and cochains as in topology. It is then easy to conclude that for

(M,A) a pair of locally semialgebraic spaces, these groups coincide
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with the groups H_(M,A;G) and H"(M,A;G) defined essentially by Delfs

[D], [D1], [DK3]. {We described the groups Hn(M,A;G) in III, §7.}

Here our theory reaches a remarkable point. To understand, why, let

us recall the approach of Delfs to the homology groups, say, of a
single polytope M. {We take A = .} The polytope M can be triangulated.
Choosing an isomorphism ¢ : IKlR-iaM with K a finite abstract simplicial
complex we "know" a priori what Hn(M,G) should be: It should coincide
with the abstract homology Hn(K,G) of the simplicial complex K. The
problem is, to prove that the groups Hn(K,G) do not depend on the
choice of the triangulation. Delfs solves this problem in an ingenious
way. He looks at the simplicial cohomology groups H® (K,G) for the tri-
angulations of M. He proves that they all are naturally isomorphic to
the cohomology groups Hn(M,GM) of the constant sheaf GM with stalk G.

Knowing that the Hn(K,G) are independent of the triangulation he con-

cludes that the Hn(K,G) also are independent of the triangulation.

In the course of this approach Delfs has to cope with some tedious
geometric problems. {The main task is to prove the homotopy invariance
of the groups Hn(M,GM). In [D1] Delfs solves this problem brilliantly
by using sheaf theory on abstract locally semialgebraic spaces.} The
remarkable fact now is that we obtain the independence of the groups
Hn(K,G) from the choice of the triangulation in a much easier way.
Once we have the homotopy theory of Chapter V at hands, which is a
straightforward matter, we define the ordinary homology groups Hn(M,G)
almost by general categorial nonsense, and prove Hn(M,G) = Hn(K,G) in
the standard way (cf. VI, §3). Thus one may say that it is possible

to circumvent the labours of Delfs by enlarging the category of affine
semialgebraic spaces over R to a category of spaces which is more com-

fortable for homotopy considerations, namely WSA(R). {But notice that

our approach does not give a connection of ordinary cohomology with
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sheaf cohomology.}

How about an interpretation of the elements of H (M,A;G) by chains of
singular simplices, as in topology? Of course, a singular simplex here
means a semialgebraic map (= morphism) from the closed standard simplex
V(n) in Rn+1 to M. For any pair (M,A) of weakly semialgebraic spaces
over R we can define the singular chain complex C.(M,A;G) as in topo-
logy. The problem is to prove that the groups Hn(C.(M,A;G)) fit together
to an ordinary homology theory and that HO(C.(*,Q;G)) = G, with x de-

noting the one point space. This would imply a natural isomor phism

from this homology theory to H, (-,G).

Delfs and I have tried for years in vain to find such a proof in a
direct geometric way. The difficulty was always to prove an excision
theorem for the groups Hn(C.(M,A;G)) in the case that the field R is
not archimedean. We could not prove excision even for a triad of poly-
topes. As in classical theory one would like to make a given singular
chain "small" with respect to a given finite open covering (with two
open semialgebraic sets) by applying some iterated subdivision to the
singular simplices in the chain. But the trouble is that, as long as
one tries barycentric subdivision or some other sort of finite linear
subdivision, the simplices have no reason to become small if R is not

archimedean.

The last Chapter VII of the present book contains a solution of the
problem - along very different lines. This solution is perhaps the most
convincing single issue, up to now, to demonstrate that weakly semi-

algebraic spaces are really useful.

We proceed roughly as follows. Every simplicial set K (= semisimplicial

set = semisimplicial complex, in other terminologies) can be "realized"
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as a weak polytope |K|_  over R in much the same way as this is known

R
in topology [Mi1]. The space IKIR carries a natural structure of a Cw-
complex. If (K,L) is a pair of simplicial sets (of course, with L a

simplicial subset of K), then it follows from the cellular description
of ordinary homology mentioned above that the ordinary homology groups

Hn(IKIR,lLIR;G) can be identified with the well known (cf. [La] or

[May]) "abstract" homology groups H_(K,L;G).

If M is a weakly semialgebraic space over R we can form the singular
simplicial set Sin M consisting of the singular simplices of M. The
realization 1SiJ1M|R comes with a canonical weakly semialgebraic map
jM : |Sin M| — M. We prove that jM is a homotopy equivalence (VI, §7)
following the book [LW] of Lundell and Weingram. {In topology jM is
only a weak homotopy equivalence. In most texts on simplicial methods

- but non in [LW] - this is proved by already using the fact that the

topological singular homology groups form an ordinary homology theory.}

More generally, if A is a subspace of M, then jy gives a homotopy equi-

valence from the pair (ISjijIR, [Sin AIR ) to (M,A). Thus
Hq(M,A;G) = Hq(ISin MIR, |Sin AIR; G) = Hq(Sin M, Sin A; G),

and this group is Hq(C.(M,A;G)) by definition.

Since we know that the canonical maps jM are homotopy equivalences the
door is now wide open for the use of simplicial sets in semialgebraic

geometry. Thus, finally, we can abolish our previous verdict "no

simplicial sets, only simplicial complexes" [DK3, p. 124].

Simplicial sets have proved to be enormously useful in many
branches of topology, in particular in the theory of fibrations. Much

of this material can now be used in semialgebraic geometry. Some
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applications to the theory of semialgebraic fibrations will be given

in the next volume [SFC].

But one needs more. One needs simplicial spaces instead of just simpli-

cial sets. By a simplicial space X over R we mean a simplicial object
in WSA(R), i.e. a sequence (Xn|n€No) of weakly semialgebraic spaces
over R with various weakly semialgebraic face and degeneracy maps
between them (VII, §1). Simplicial sets may be regarded as discrete

simplicial spaces over R.

Roughly half of our last Chapter VII is devoted to an explication of
the fundamentals of simplicial spaces and their realizations. Difficul-
ties for future application will arise from the fact that we are only

able to construct the realization IX|p of a partially proper simplicial

space X. By this we mean a simplicial space all whose face maps are par-
tially proper. Fortunately discrete simplicial spaces are partially

proper.

A reader having worked through the fundamentals of weakly semialgebraic
spaces and maps in Chapter IV may feel bored to meet in Chapter VII
similar stuff about simplicial spaces. To give such a reader some com-

fort we indicate now by an example that this stuff is really useful.

Let G be a complete semialgebraic group over R. {For instance think of
some orthogonal group O(n,R).} If M is an affine semialgebraic space,
then it is clear from the beginnings of semialgebraic geometry what is
meant by a principal G-fibre bundle ¢ : E » M over M. The definition is
exactly as in topology, of course with a finite trivializing covering

of M by open semialgebraic subsets.

We now pose the following problem. Let S be a real closed overfield of
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R and let y : F - M(S) be a principal G(S)-bundle over M(S). Does there
exist a principal G-bundle ¢ : E - M over M such that the base extension

Wg : E(S) -» M(S) is isomorphic to y over M(S)?

It seems hard to solve this problem in a direct geometric way. We shall
solve it in [SFC] in the affirmative as follows. Let /G denote the nerve
of the group G. This is a simplicial space built as in topology, cf.
Example VII.1.2.v below. #G is partially proper since G is complete
(partially complete would suffice). Let BG denote the realization

WG|. One finds as in topology that the isomorphism classes of G-princi-
pal bundles over M are in natural one-to-one correspondence with the
elements of the homotopy set [M,BG]. By the first main theorem on homo-
topy sets the base extension map from [M,BG] to [M(S), (BG) (S)] is bi-
jective (V.5.2.i; essentially this is already clear from III.3.1). By
the canonical nature of the definition of #G it is evident that (BG) (S) =
B(G(S)). Thus we have a natural bijection from [M,BG] to [M(S)B(G(S))].
We conclude that the isomorphism classes of principal G-bundles over M
correspond uniquely with the isomorphism classes of principal G(S)-bundles

over M(S) by base extension. The answer to the question above is "Yes".

At first glance the present book might convey the impression that in
semialgebraic geometry one now has a homotopy theory at hands which is
as good and easy as the topological one. But this impression is deceptive.
In order to destroy it I come back to the two deficiencies of the homo-
topy theory in [LSA] listed above. While the first one disappears in

the category WSA(R), the second one (existence of mapping spaces) re-

mains serious.

One would like to have good substitutes (or "models") of the presumably
not existing mapping spaces and their prominent subspaces. In VI, §7 we

define "pseudo-mapping spaces" and "pseudo-loop spaces" which do some



