€

by

XEHENHELS (REDRL)

Second Edition

OPERATING
SYSTEMS

Design and Implementation

R1ER %

Bt R%H
(% =)

Andrew S. Tanenbaum
Albert S. Woodhull

e AT

BEXFEH B3t - PRENTICE HALL

OPERATING SYSTEMS:

Design and Implementation
Second Edition

i ﬂﬁgﬂbﬁéﬁ@ﬁiﬁ

Andrew S. Tanenbaum
Albert S. Woodhull

HEXFEHRH

Prentice-Hall Internatic=~* Inc.

(X)) HEBEF 1585

Operating Systems: design and implementation 2nd Ed. /Andrew S. Tanen-
baum, Albert S. Woodhull

© 1997 by Prentice Hall, Inc. |

Original edition published by Prentice Hall, Inc., a Simon & Schuster Compa-

ny.
Prentice Hall A7 B H £ X FHBELETERN(FEEFTE . RITMNE
E)MFHRRITABREL,

EREMBLAR, REHEEBARE ARAEATADE. FTRRM

B,
FH A5 Prentice Hall BABHIRE . THEBHERDHN.

SRR BEFENEGERIES . 01-97-1230

EBERRE (CIP) BB

WYERG. 3T R S8 RR 2530/ () HF R 18 (Tanenbaum A. S), (3%)
RN /R (Woodhull A.S)F¥ . - A | — Jbx(: HHEKFEHRM, 1997.9
(KEFHENEFAD)

ISBN 7-302-02714-5

1.8 I.0O¥ - Of- 0.HBERKEEEHE) N. TP316
HE R A E B CIP HIEEF(97)58 17357 B

HARE . B H R LR BRI R4 100084)
B4R bt .- www. tup. tsinghua. edu. cn

EIR & WEEKEEHRT

BiTE . FERERELRBSHERITH

FF A& 850X11681/32 EPIK. 30

B W 199749 B 1K 19984 7 H & 3 WEIRI

$ 5. ISBN 7-302-02714-5/TP « 1405

Bl #. 10001~15000

E . 69.00 7T

i AR Al &

BITHRZEE FRERLE, HEHEE—MERENER
PR At TH 7R R ZE R B S SCBER S A E S HLE S
EIRR AR SR 1% 3 5 A SNE 22 E E LR WMPHE. B4
P TR e AU A 5 B SMRAT AT O Sk A1 45 1 32 9 64 A
T ERERNR, TU AR S PR E RS PR KRG B
BB AT U, R E R HBERA M KR EIFHZRN PH —
FHE TP ENAE N BBRBFE . FAR, EXRHPFENET
X TRBHFERMBEER AR R L FME"RZ I,
BTESE R R T R R BB T RETRE —EH
BN S EMRURBREMENBFSEL AREXTHNRE,
RNPEET 7 R HBEVURET T BB A B TR E I R
Prentice Hall 2 5] FIHE 405) A X R -G-1E 05 B R SEE K 7 i
B I A RERFER AN RM T 22 A4 HE XX
PO CE T BRI R

EAERE At

Prentice Hall 22 H]

1996.11

OPERATING SYSTEMS:

DESIGN AND IMPLEMENTATION

Second Edition

PREFACE

Most books on operating systems are strong on theory and weak on practice.
This one aims to provide a better balance between the two. It covers all the fun-
damental principles in great detail, including processes, interprocess communi-
cation, semaphores, monitors, message passing, scheduling algorithms, input/out-
put, deadlocks, device drivers, memory management, paging algorithms, file sys-
tem design, security, and protection mechanisms. But it also discusses one partic-
ular system—MINIX, a UNIX-compatible operating system—in detail, and even
provides a complete source code listing for study. This arrangement allows the
reader not only to learn the principles, but also to see how they are applied in a
real operating system.

When the first edition of this book appeared in 1987, it caused something of a
small revolution in the way operating systems courses were taught. Until then,
most courses just covered theory. With the appearance of MINIX, many schools
began to have laboratory courses in which students examined a real operating sys-
tem to see how it worked inside. We consider this trend highly desirable and hope
this second edition strengthens it.

It its first 10 years, MINIX has undergone many changes. The original code
was designed for a 256K 8088-based 1BM PC with two diskette drives and no
hard disk. It was also based on Version 7 of UNIX. As time went on, MINIX evol-
ved in many ways. For example, the current version will now run on anything
from the original PC (in 16-bit real mode) to large Pentiums with massive hard
disks (in 32-bit protected mode). It also changed from being based on Version 7,

XV

xvi PREFACE

to being based on the international POSIX standard (IEEE 1003.1 and ISO 9945-1)
Finally, many features were added, perhaps too many in our view, but too few in
the view of some other people, which led to the creation of LINUX. In addition,
MINIX was ported to many other platforms. including the Macintosh, Amiga,
Atari, and SPARC. This book covers only MINIX 2.0, which so far runs only on
computers with an 80x86 CPU, on systems which can emulate such a CPU, or on
the SPARC.

This second edition of the book has many changes throughout. Nearly all of
the material on principles has been revised, and considerable new material has
been added. However, the main change is the discussion of the new, POSIX-based
MINIX, and the inclusion of the new code in this book. Also new is the inclusion
of a CD-ROM in each book containing the full MINIX source code plus instruc-
tions for installing MINIX on a PC (see the file README.TXT in the main CD-
ROM directory).

Setting up MINIX on an 80x86 PC, whether for individual use or for a labora-
tory is straightforward. A disk partition of at least 30 MB must be made for it,
then it can be installed by just following the instructions in the README.TXT file
on the CD-ROM. To print the README.TXT file on a PC, first start MS-DOS, if it
is not already running (from WINDOWS, click on the MS-DOS) icon. Then type

copy readme.txt prn

to make the printout. The file can also be examined in edit, wordpad, notepad, or
any other text editor that can handle flat ASCII text.

For schools (or individuals) that do not have PCs available, two other options
are now available. Two simulators are included on the CD-ROM. One, written
by Paul Ashton, runs on SPARCs. It runs MINIX as a user program on top of
Solaris. As a consequence, MINIX is compiled into a SPARC binary and runs at
full speed. In this mode, MINIX is no longer an operating system, but a user pro-
gram, so some changes to the low-level code were necessary.

The other simulator was written by Kevin P. Lawton of Bochs Software Com-
pany. This simulator interprets the Intel 80386 instruction set and enough /O
gear that MINIX can run on the simulator. Of course running on top of an inter-
preter costs some performance, but it makes debugging much easier for students.
This simulator has the advantage that it will run on any computer that supports the
M.LT. X Window System. For more information about both simulators, please
see the CD-ROM.

The development of MINIX is an ongoing proposition. The contents of this
book and its CD-ROM are merely a snapshot of the system as of the time of publi-
cation. For the current state of affairs, please see the MINiX home page on the
World Wide Wide, http:/fwww.cs.vu.nl/~ast/minix.html. In addition, MINIX has its
own USENET newsgroup: comp.os.minix, to which readers can subscribe to find
out what is going on in the MINIX world. For those with e-mail, but without news-
group access, there is also a mailing list. Write to listserv@listserv.nodak.edu

PREFACE xvii

with “subscribe minix-1 <your full name>"" as the first and only line in the body
of the message. You will receive more information by return e-mail.

For classroom use, a problem solutions manual is available, to instructors
only, from Prentice Hall. PostScript files containing all the figures in the book,
suitable for making overhead sheets, can be found by following the link marked
“Software and supplementary material”” from http://www.cs. vi.nl/~ast/.

“We have been extremely fortunate in having the help of many people during
the course of this project. First and foremost, we would like to thank Kees Bot for
doing the lion’s share of the work in making MINIX conform to the standard and
for managing the distribution. Without his enormous help, we would never have
made it. He wrote large chunks of code himself (e.g. the POSIX terminal I/O),
cleaned up other sections, and repaired numerous bugs that had crept in over the
years. Thank you for a job well done.

Bruce Evans, Philip Homburg, Will Rose, and Michael Temari have all con-
tributed to the development of MINIX over the years. Hundreds of other people
have contributed to MINIX via the newsgroup. There were so many of them and
their contributions have been so varied that we cannot even begin to list them all
here, so the best we can do is a generic thank you to all of them.

Several people read parts of the manuscript and made suggestions. We would
like to give our special thanks to John Casey, Dale Grit, and Frans Kaashoek.

A number of students at the Vrije Universiteit tested the beta version of the
CD-ROM. These were: Ahmed Batou, Goran Dokic, Peter Gijzel, Thomer Gil,
Dennis Grimbergen, Roderick Groesbeek, Wouter Haring, Guido Kollerie, Mark
Lassche, Raymond Ris, Frans ter Borg, Alex van Ballegooy, Ries van der Velden,
Alexander Wels, and Thomas Zeeman. We would like to thank all of them for
their careful work and detailed reports.

ASW would also like to thank several of his former students, particularly
Peter W. Young of Hampshire College and Maria Isabel Sanchez and William
Puddy Vargas of the Universidad Nacional Autonoma de Nicaragua for the part
their interest in MINIX played in sustaining his efforts.

Finally, we would like to thank our families. Suzanne has been through this
ten times now. Barbara has been through it nine times now. Marvin has been
through it eight times now. Even Little Bram has been through it four times. It's
kind of getting to be routine, but the love and support is still much appreciated.
(ast)

As for Al’s Barbara, this is the first time she has been through this. It would
not have been possible without her support, patience, and good hwaor. It has
been Gordon’s good fortune to have been away at college through most of this.
But it is a delight to have a son who understands and cares about the same things
that fascinate me. (asw)

Andrew S. Tanenbaum
Albert S. Woodhull

ABOUT THE AUTHORS

Andrew S. Tanenbaum has an S.B. degree from M.LT. and a Ph.D. from the Univer-
sity of California at Berkeley. He is currently a Professor of Computer Science at the
Vrije Universiteit in Amsterdam, The Netherlands, where he heads the Computer Systems
Group. He is also Dean of the Advanced School for ‘Computing and Imaging, an inter-
university graduate school doing research on advanced parallel, distributed, and imaging
systems. Nevertheless, he is trying very hard to avoid turning into a bureaucrat.

In the past, he has done research on compilers, operating systems, networking, and
local-area distributed systems. His current research focuses primarily on the design of
wide-area distributed systems that scale to millions of users. These research projects have
led to over 70 refereed papers in journals and conference proceedings, and five books.

Prof. Tanenbaum has also produced a considerable volume of software. He was the
principal architect of the Amsterdam Compiler Kit, a widely-used toolkit for writing port-
able compilers, as well as of MINIX. Together with his Ph.D. students and programmers,
he helped design the Amoeba distributed operating system, a high-performance micro-
kernel-based distributed operating system. MINIX and Amoeba are now available for free
for education and research via the Intcrnet.

His Ph.D. students have gone on to greater glory after getting their degrees. He is
very proud of them. In this respect he resembles a mother hen.

Prof. Tanenbaum is a Fellow of the ACM, a Senior Member of the IEEE, a member of
the Royal Netherlands Academy of Arts and Sciences, winner of the 1994 ACM Karl V.
Karlstrom Outstanding Educator Award, and winner of the 1997 ACM/SIGCSE Award for
QOutstanding Contributions to Computer Science Education. He is also listed in Who's
Who in the World. His home page on the World Wide Web can be found at URL
http:/fwww.cs.vu.nl/~ast/ .

Albert S. Woodhull has an S.B. degree from M.I.T. and a Ph.D. from the University
of Washington. He entered M.LT. intending to become an electrical engineer, but he
emerged as a biologist. He has been associated with the School of Natural Science of
Hampshire College in Amherst, Massachusetts, since 1973. As a biologist using electronic
instrumentation, he started working with microcomputers when they became readily avail-
able. His instrumentation courses for science students evolved into courses in computer
interfacing and real-time programming.

Dr. Woodhull has always had strong interests in teaching and in thc role of science
and technology in development. Before entering graduate school he taught high school
science for two years in Nigeria. More recently he spent several sabbaticals teaching com-
puter science at Nicaragua’s Universidad Nacional de Ingenieria and the Universidad
Nacional Autonoma de Nicaragua.

He is interested in computers as electronic systems, and in interactions of computers
with other electronic systems. He particularly enjoys teaching in the areas of computer
architecture, assembly language programming, operating systems, and computer communi-
cations. He has also worked as a consultant in the development of electronic instrumenta-
tion and related software.

He has many nonacademic interests as well, including various outdoor sports, amateur
radio, and reading. He enjoys travelling and trying to make himself understood in
languages other than his native English. His World Wide Web home page is located on a
system running MINIX, at URL http://minix] hampshire.edu/asw/ .

CONTENTS

PREFACE XV

1 INTRODUCTION 1

1.1 WHAT IS AN OPERATING SYSTEM? 3
1.1.1 The Operating System as an Extended Machine 3
1.1.2 The Operating System as a Resource Manager 4

1.2 HISTORY OF OPERATING SYSTEMS 5
1.2.1 The First Generation (1945-55) Vacuum Tubes and Plugboards 6
1.2.2 The Second Generation (1955-65) Transistors and Batch Systems 6
1.2.3 The Third Generation (1965-1980): ICs and Multiprogramming 8
1.2.4 The Fourth Generation (1980-Present): Personal Computers 12
1.2.5 History of MINIX 13

1.3 OPERATING SYSTEM CONCEPTS 15
1.3.1 Processes 15
1.3.2 Files 17
1.3.3 The Shell 20

1.4 SYSTEM CALLS 21
1.4.1 System Calls for Process Management 22
1.4.2 System Calls for Signaling 26
1.4.3 System Calls for File Management 28
1.4.4 System Calls for Directory Management 33
1.4.5 System Calls for Protection 35
1.4.6 System Calls for Time Management 36

viii CONTENTS

1.5 OPERATING SYSTEM STRUCTURE 37
1.5.1 Monolithic Systems 37
1.5.2 Layered Systems 39
1.5.3 Virtual Machines 40
1.54 Client-Server Model 42

1.6 OUTLINE OF THE REST OF THIS BOOK 44
1.7 SUMMARY 44

2 PROCESSES

2.1 INTRODUCTION TO PROCESSES 47
2.1.1 The Process Model 48
2.1.2 Implementation of Processes 52
2.1.3 Threads 53

2.2 INTERPROCESS COMMUNICATION 57
2.2.1 Race Conditions 57
2.2.2 Critical Sections 58 _
2.2.3 Mutual Exclusion with Busy Waiting 59
2.2.4 Sleep and Wakeup 63
2.2.5 Semaphores 66
2.2.6 Monitors 68
2.2.7 Message Passing 72

2.3 CLASSICAL IPC PROBLEMS 75
2.3.1 The Dining Philosophers Problem 75
2.3.2 The Readers and Writers Problem 77
2.3.3 The Sleeping Barber Problem 80

2.4 PROCESS SCHEDULING 82
2.4.1 Round Robin Scheduling 84
2.4.2 Priority Scheduling 85
2.4.3 Multiple Queues 86
2.4.4 Shortest Job First 87
2.4.5 Guaranteed Scheduling 89
24.6 Lottery Scheduling 89
2.4.7 Real-Time Scheduling 90
2.4.8 Two-level Scheduling 92
2.4.9 Policy versus Mechanism 93

25

2.6

2.7

CONTENTS ix

OVERVIEW OF PROCESSES IN MINIX 93
2.5.1 The Internal Structure of MINIX 93

2.5.2 Process Management in MINIX 95

2.5.3 Interprocess Communication in MINIX 97
2.5.4 Process Scheduling in MINIX 98

IMPLEMENTATION OF PROCESSES IN MINIX 98
2.6.1 Organization of the MINIX Source Code 99
2.6.2 The Common Header Files 102

2.6.3 The MINIX Header Files 107

2.6.4 Process Data Structures and Header Files 112
2.6.5 Bootstrapping MINIX 120

2.6.6 System Initialization 122

2.6.7 Interrupt Handling in MINIX 128

2.6.8 Interprocess Communication in MINIX 137
2.6.9 Scheduling in MINIX 140

2.6.10 Hardware-Dependent Kernel Support 142
2.6.11 Utilities and the Kernel Library 145

SUMMARY 147

INPUT/OUTPUT 153

3.1

32

33

PRINCIPLES OF /O HARDWARE 154
3.1.1 I/O Devices 154

3.1.2 Device Controllers 155

3.1.3 Direct Memory Access (DMA) 157

PRINCIPLES OF IO SOFTWARE 159
3.2.1 Goals of the I/OQ Software 1359

3.2.2 Interrupt Handlers 161

3.2.3 Device Drivers 161

3.2.4 Device-Independent /O Software 162
3.2.5 User-Space /O Software 164

DEADLOCKS 166

3.3.1 Resources 167

3.3.2 Principles of Deadlock 168
3.3.3 The Ostrich Algorithm 170
3.34 Detection and Recovery 172
3.35 Deadlock Prevention 173
3.3.6 Deadlock Avoidance 175

CONTENTS

34 OVERVIEW OF /O IN MINIX 179
3.4.1 Interrupt Handlers in MINIX 180
3.4.2 Device Drivers in MINIX 181
3.4.3 Device-Independent I/O Software in MINIX 185
3.4.4 User-level I/O Software in MINIX 185
3.4.5 Deadlock Handling in MINIX 186

3.5 BLOCK DEVICES IN MINIX 187
3.5.1 Overview of Block Device Drivers in MINIX 187
3.5.2 Common Block Device Driver Software 190
3.5.3 The Driver Library 193

3.6 RAMDISKS 195
3.6.1 RAM Disk Hardware and Software 196
3.6.2 Overview of the RAM Disk Driver in MINIX 197
3.6.3 Implementation of the RAM Disk Driver in MINIX 198

3.7 DISKS 200
3.7.1 Disk Hardware 200
3.7.2 Disk Software 202
3.7.3 Overview of the Hard Disk Driver in MINIX 208
3.7.4 Implementation of the Hard Disk Driver in MINIX 211
3.7.5 Floppy Disk Handling 220

3.8 CLOCKS 222
3.8.1 Clock Hardware 223
3.8.2 Clock Software 224
3.8.3 Overview of the Clock Driver in MINIX 227
3.8.4 Implementation of the Clock Driver in MINIX 230

3.9 TERMINALS 235
3.9.1 Terminal Hardware 235
392 Terminal Software 240
3.9.3 Overview of the Terminal Driver in MINIX 249
3.9.4 Implementation of the Device-Independent Terminal Driver 264
3.9.5 Implementation of the Keyboard Driver 282
3.9.6 Implementation of the Display Driver 288

3.10 THE SYSTEM TASK IN MINIX 296

3.11 SUMMARY 304

4

CONTENTS xi

MEMORY MANAGEMENT 309

4.1

4.2

43

44

45

4.6

4.7

BASIC MEMORY MANAGEMENT 310
4.1.1 Monoprogramming without Swapping or Paging 310
4.1.2 Multiprogramming wiith Fixed Partitions 311

SWAPPING 313
42.1 Memory Management with Bit Maps 316
422 Memory Management with Linked Lists 317

VIRTUAL MEMORY 319

4.3.1 Paging 319

4.3.2 Page Tables 322

4.33 TLBs—Translation Lookaside Buffers 327
4.3.4 Inverted Page Tables 330

PAGE REPLACEMENT ALGORITHMS 331

44.1 The Optimal Page Replacement Algorithm 331

4.42 The Not-Recently-Used Page Replacement Algorithm 332

4.4.3 The First-In, First-Out (FIFO) Page Replacement Algorithm 333
4.4.4 The Second Chance Page Replacement Algorithm 333

4.4.5 The Clock Page Replacement Algorithm 334

44.6 The Least Recently Used (LRU) Page Replacement Algorithm 334
4.47 Simulating LRU in Software 336

DESIGN ISSUES FOR PAGING SYSTEMS 338
4.5.1 The Working Set Model 338

4.5.2 Local versus Global Allocation Policies 339
4.5.3 Page Size 341

4.5.4 Virtual Memory Interface 343

SEGMENTATION 343

4.6.1 Implementation of Pure Segmentation 347

4.6.2 Segmentation with Paging: MULTICS 348

4.6.3 Segmentation with Paging: The Intel Pentium 352

OVERVIEW OF MEMORY MANAGEMENT IN MINIX 356
4.7.1 Memory Layout 358

4.7.2 Message Handling 361

473 Memory Manager Data Structures and Algorithms 363
4.7.4 The FORK, EXIT, and WAIT System Calls 367

4.7.5 The EXEC System Call 368

4.7.6 The BRK System Call 371

4.7.7 Signal Handling 372

4.71.8 Other System Calls 378

CONTENTS

4.8 IMPLEMENTATION OF MEMORY MANAGEMENT IN MINIX 379
4.8.1 The Header Files and Data Structures 379
4.8.2 The Main Program 382
4.8.3 Implementation of FORK, EXIT, and WAIT 382
4. 4 Impiementation of EXEC 385
4.8.5 Impiementation of BRK 386
4.8.6 Implementation of Signal Handling 387
4.8.7 Implementation of the Other System Calls 393
4.8.8 Memory Manager Utilities 394

49 SUMMARY 396

FILE SYSTEMS 401

5.1 FILES 402
5.1.1 File Naming 402
5.1.2 File Structure 404
5.1.3 File Types 405
5.1.4 File Access 407
5.1.5 File Attributes 408
5.1.6 File Operations 409

5.2 DIRECTORIES 410
5.2.1 Hierarchical Directory Systems 411
5.2.2 Path Names 412
5.2.3 Directory Operations 414

5.3 FILE SYSTEM IMPLEMENTATION 415
5.3.1 Implementing Files 415
5.3.2 Implementing Directories 419
5.3.3 Disk Space Management 422
5.3.4 File System Reliability 424
5.3.5 File System Performance 429
5.3.6 Log-Structured File Systems 432

54 SECURITY 434
5.4.1 The Security Environment 434
5.4.2 Famous Security Flaws 436
5.4.3 Generic Security Attacks 439
5.4.4 Design Principles for Security 441
5.4.5 User Authentication 442

CONTENTS xiii

5.5 PROTECTION MECHANISMS 446
5.5.1 Protection Domains 446
5.5.2 Access Control Lists 448
5.5.3 Capabilities 450
5.5.4 Covert Channels 451

5.6 OVERVIEW OF THE MINIX FILE SYSTEM 453
5.6.1 Messages 454
5.6.2 File System Layout 454
5.6.3 BitMaps 458
5.6.4 I-nodes 460
5.6.5 The Block Cache 461
5.6.6 Directories and Paths 463
5.6.7 File Descriptors 465
5.6.8 File Locking 467
5.6.9 Pipes and Special Files 467
5.6.10 An Example: The READ System Call 469

5.7 IMPLEMENTATION OF THE MINIX FILE SYSTEM 470
5.7.1 Header Files and Global Data Structures 470
5.7.2 Table Management 474
5.7.3 The Main Program 482
5.74 Operations on Individual Files 485
5.7.5 Directories and Paths 493
5.7.6 Other System Calls 498
5.7.7 The IO Device Interface 501
5.7.8 General Utilities 503

5.8 SUMMARY 503

READING LIST AND BIBLIOGRAPHY 507

6.1 SUGGESTIONS FOR FURTHER READING 507
6.1.1 Introduction and General Works 507
6.1.2 Processes 509
6.1.3 Input/Output 510
6.1.4 Memory Management 511
6.1.5 File Systems 511

6.2 ALPHABETICAL BIBLIOGRAPHY 512

xiv CONTENTS

APPENDICES

A MINIX SOURCE CODE LISTING

B INDEX TO FILES

C INDEX TO SYMBOLS

INDEX

521

905

909

925

