Texts and
- Monographs

in Physics

H.L.Cycon R:.Froese W.Kirsch
B. Simon

Schrodinger Operators

with Application to Quantum Mechanics
and Global Geometry ‘

)

ST
A %
Qg

@ Springer-Verlag



b m—— aa

H.L. Cycon R.G.Froese W. Klrsch
B.Simon

f Schrodinger Operators

with Application to Quahtum Mechanics
and Global Geometry

With 2 Figures

Springer-veriag
Berlin Heidelberg New York -
London Paris Tokyo




Dr. Hans L. Cycon

Technische Universitit Berlin
Fachbereich 3 — Mathematik

StraBe des 17. Juni 135, D-1000 Berlin 12

Dr. Richard G. Froese

Department of Mathematics
University of British Columbia
Vancouver, B.C., Canada V6T 1W5

FEditors

Wolf Beiglbock

Institut fiir Angewandte Mathematik
Universitdt Heidelberg

Im Neuenheimer Feld 294

D-6900 Heidelberg 1

Fed. Rep. of Germany

Joseph L. Birman

Department of Physics, The City College
of the City University of New York
New York, NY 10031, USA

Robert Geroch

University of Chicago
Enrico Fermi Institute
5640 Ellis Ave.

Chicago, IL 60637, USA

Professor Dr. Werner Kirsch
Institut fiir Mathematik

Universitdt Bochum

D-4630 Bochum, Fed. Rep. of Germany

Professor Dr. Barry Simon
California Institute of Technology
Department of Mathematics 253-37
Pasadena, CA 91125, USA

Elliott H. Lieb

Department of Physics
Joseph Henry Laboratories
Princeton University
Princeton, NJ 08540, USA

Tullio Regge

Istituto di Fisica Teorica
Universita di Torino, C. so M. d’Azeglio, 46
1-10125 Torino, Italy

Walter Thirring

Institut fiir Theoretische Physik
der Universitdt Wien, Boltzmanngasse 5
A-1090 Wien, Austria

ISBN 3-540-16759-5 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-16759-5 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataloging-in-Publication Data. Schrodinger operators, with application to quantum
mechanics and global geometry. (Texts and monographs in physics) Chapters 1-11 are revised notes taken
from a summer course given in 1982 in Thurnau, West Germany by Barry Simon. Bibliography: p. Includes
index. 1. Schrodinger operator. 2. Quantum theory. 3. Global differential geometry. I. Cycon, H.L. (Hans
Ludwig}), 1942-. I1. Simon, Barry. 1II. Series. QC174.17.86537 1987 515.7°246 86-13953

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically those of translation, reprinting, reuse of illusirations, broadcasting, reproduction by
photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright
Law, where copies are made for other than private use, a fee is payable to “Verwertungsgesellschaft Wort”,
Munich.

© Springer-Verlag Berlin Heidelberg 1987
Printed in Germany

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

Typesetting: ASCO Trade Typesetting Limited, Hongkong
Offset printing: Druckhaus Beltz, 6944 Hemsbach
Bookbinding: J. Schiffer GmbH & Co. KG, 6718 Griinstadt
2153/3150-543210



Preface

In the summer of 1982, I gave a course of lectures in a castle in the small town
of Thurnau outside of Bayreuth, West Germany, whose university hosted the
lecture series. The Summer School was supported by the Volkswagen founda-
tion and organized by Professor C. Simader, assisted by Dr. H. Leinfelder. I
am grateful to these institutions and individuals for making the school, and
thus this monograph, possible.

About 40 students took part in a grueling schedule involving about 45 hours
of lectures spread over eight days! My goal was to survey the theory of
Schrodinger operators emphasizing recent results. While I would emphasize
that one was not supposed to know all of Volumes 1 — 4 of Reed and Simon (as
some of the students feared!), a strong grounding in basic functional analysis
and some previous exposure to Schroédinger operators was useful to the
students, and will be useful to the reader of this monograph.

Loosely speaking, Chaps. 1—11 of this monograph represent “notes” of
those lectures taken by three of the “students” who were there. While the gener-
al organization does follow mine, I would emphasize that what follows is far
from a transcription of my lectures. Even with 45 hours, many details had to be
skipped, and quite often Cycon, Froese and Kirsch have had to flesh out some
rather dry bones. Moreover, they have occasionally rearranged my arguments,
replaced them with better ones and even corrected some mistakes!

Some results such as Lieb’s theorem (Theorem 3.17) that were relevant to
the material of the lectures but appeared during the preparation of the mono-
graph have been included.

Chapter 11 of the lectures concerns some beautiful ideas of Witten reducing
the Morse inequalities to the calculation of the asymptotics of eigenvalues of
cleverly chosen Schrédinger operators (on manifolds) in the semiclassical limit.
When I understood the supersymmetric proof of the Gauss-Bonnet-Chern
theorem (essentially due to Patodi) in the summer of 1984, and, in particular,
using Schrédinger operator ideas found a transparent approach to its analytic
part, it seemed natural to combine it with Chap. 11, and so [ wrote a twelfth
chapter. Since I was aware that Chaps. 11 and 12 would likely be of interest to a
wider class of readers with less of an analytic background, I have included in
Chap. 12 some elementary material (mainly on Sobolev estimates) that have
been freely used in earlier chapters.

Los Angeles, Fall 1986 Barry Simon
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1. Self-Adjointness

Self-adjointness of Schrédinger operators has been a fundamental mathematical
problem since the beginning of quantum mechanics. It is equivalent to the unique
solvability of the time-dependent Schrodinger equation, and it plays a basic role
in the foundations of quantum mechanics, since only self-adjoint operators can
ben understood as quantum mechanical observables (in the sense of von Neumann
[361]).

It is an extensive subject with a large literature (see e.g. [293, 107, 196]) and
the references given there), and it has been considerably overworked. There are
only a few open problems, the most famous being Jorgens” conjecture (see [293,
p- 339; 71, 317]).

We will not go into an exhaustive overview, but rather pick out some subjects
which seen to us to be worth emphasizing, We will begin with a short review of
the basic perturbation theorems and then discuss two typical classes of pertur-
bations. Then we will discuss Kato’s inequality. Finally, using an idea of Kato,
we give some details of the proof of the theorem of Leinfelder and Simader on
singular magnetic fields.

1.1 Basic Perturbation Theorems

First, we give some definitions (see [293, p. 162] for a more detailed discussion).
We denote by A and B, densely-defined linear operators in a Hilbert space H,
and by D(A) and Q(A), the operator domain and form domain of A respectively.

Definition 1.1. Let 4 be seif-adjoint. Then B is said to be A-bounded if and only
if

(i) D(4) = D(B)
(ii) there are constants a, b > 0 such that

IBoll < all4e| + bllol for @eD(4) . (L.1)

The infimum of all such a is called the A-bound (or relative-bound) of B.
There is an analogous notion for quadratic forms:

Definition 1.2. Let A be self-adjoint and bounded from below. Then a symmetric
operator B is said to be A-form bounded if and only if
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(i) Q(4) < Q(B)

(ii) there are constants a, b > 0 such that

[{@, Bopy| < alp, Ap) + b{p,p)> for ¢@eQ(4) .

The infimum of all such a is called the A-form-bound (relative form-bound)
of B.

Note that the operators in the above definitions do not need to be self-adjoint
or symmetric [196, p. 190, p. 319]. We require it here because later propositions
will be easier to state or prove for the self-adjoint case.

A subspace in H is called a core for A if it is dense in D(A) in the graph norm.
It is called a form core if it is dense in Q(A) in the form norm.

There is an elementary criterion for relative boundedness.

Proposition 1.3. (i) Assume A to be self-adjoint and D(A) = D(B). Then B is
A-bounded if and only if B(4 + i)t is bounded. The A-bound of B is equal to

lim |B(A +iy)7!] .

Jy[=o0

(i) (form version). Assume A to be self-adjoint, bounded from below and
Q(A) = Q(B). Then B is A-form-bounded if and only if (4 + i) Y2 B(A4 + 1) 2 is
bounded. The A-form-bound of B is equal to

lim (4 + iy) "2 B(A + iy)™2| .

[7}—re0

The assertion (i) can easily be seen by replacing ¢ by (A + iy) ™'y in (1.1) and
observing that | B(A + iy)~!| < [a + (b/|7])]. (ii) follows analogously. Note that
there is an extension of this notion which we use occasionally: We say that B is
A-compact if and only if B(4 + i)™ is compact. Here i can be replaced by any
point of the resolvent set.

Now we will state the basic perturbation theorem which was proven by Kato
over 30 years ago, and which works for most perturbations of practical interest.

Theorem 1.4 (Kato-Rellich). Suppose that A is self-adjoint, B is symmetric and
A-bounded with A-bound a < 1. Then A + B [which is defined on D(A4)] is self
adjoint, and any core for A is also a core for 4 + B.

We give a sketch of the proof. Note that self-adjointness of 4 is equivalent
to Ran(4 + ip) = H for some y > 0 [292, Theorem VIIL.3]. Then, as above, we
conclude from (1.1) that

- b
IB(A+ip)7' <a+ .

Thus, for ularge enough C := B(A + ip)”! has norm less than 1, and this implies
that Ran(1 + C) = H. This, together with the equation
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1+0MAtipe=(A+Btine ¢eD(4)

and the self-adjointness of A, implies that Ran(4 + B + iu) = H. The second part
of the theorem is a simple consequence of (1.1).

There are various improvements due to Kato [196] and Wiist [371] for the
case a = 1, but in fact all the perturbations one usually deals with in the theory
of Schrodinger operators have relative bound 0.

There is also a form version of Theorem 1.4 (due to Kato, Lax, Lions,
Milgram and Nelson):

Theorem 1.5 (KLMN). Suppose that A is self-adjoint and bounded from below
and that B is symmetric and A-bounded with form-bound a < 1. Then

(i) the sum of the quadratic forms of A and B is a closed symmetric form on
Q(A) which is bounded from below.

(i) There exists a unique self-adjoint operator associated with this form which
we call the form sum of 4 and B.

(iii) Any form core for A is also a form core for A + B.

For a proof, see [293, Theorem X.17]. We will denote the form sum by A + B
when we want to emphasize the form character of the sum, otherwise we will
write A + B.

Note that in spite of the parallelism between operators and forms, there is a
fundamental asymmetry. There are symmetric operators which are closed but
not self-adjoint. But a closed form which is bounded from below is automatically
the form of a unique, self-adjoint operator [196, Theorem VI.2.1]. The form
analog of essential self-adjointness, however, does exist: a suitable set being a
form core. If one defines something to be a closed quadratic form, it is automatic
that the associated operator is self-adjoint—one knows nothing, however, about
the operator domain or the form domain. It is therefore a nontrivial fact that a
convenient set (e.g. Cg°) is a form core.

1.2 The Classes S, and K,

In this book, we will study the sum —4 + V in virtually all cases. But occasion-
ally we will also study (—iF + a)* + V as operators or forms in the Hilbert space
L?*(R"). Here V is a real-valued function on R” describing the electrostatic
potential, and a is a vector-valued function which describes the magnetic poten-
tial. We denote by H, the self-adjoint representation of —4 in L*(R"). In
reasonable cases, one can think of V as a perturbation of H,. Physically, this
is motivated by the uncertainty principle which allows the kinetic energy to
control some singularities of V if they are not too severe. This phenomenon
has no classical analog. This is also practical since the Laplacian has an explicit
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eigenfunction expansion and integral kernel, and one knows everything about
operator cores, etc.

There are two classes of perturbations we will discuss here. The class S,,
which is an (almost maximal) class of operator perturbations of H, and the class
K, which is the form analog of S,. S, was introduced originally by Stummel [352],
and has been discussed by several authors (see e.g. [308]).

Definition 1.6. Let V be a real-valued, measurable function on R". We say that
VeS§, if and only if

a) limI:sup [} |x—y|4‘”|V(y)|2d“yJ=0 if v>4

al0 x |x—y|<a
b) lim|:sup [ In(x — y|)‘1|V(y)|2d”y:| =0 if v=4
|0 x |x—y|<a

¢ sup [ [V(W)Pd'y<oo if v<3.

x [x—yl<1

For the reader who is disturbed by the lack of symmetry in the above definition,
we remark that for v < 3,

sup | |[V(»IPd’y < o

x |x—y|<1
is equivalent to
1im|:sup §oIx— y|4_"|V(y)|2d”y:| =0.
|0 x |x—y|<a
We define a §,-norm on S, by
IVis,==sup [ KGyv)IV(y)IPd'y,
x |x—yl<1

where K is the kernel in the above definition of S,. We now state (and prove) a
theorem which shows how these quantities arise naturally. We denote, by |- |, 4,
the operator norm for operators from LP(R") to L%(R"), and by |- || , the norm in
LP(RY).

Theorem 1.7. Ve §, if and only if

lim [[(Ho + E) [V |0, = 0 . (1.2)
E—-w0
Proof. As with all functions of H,, (H, + E)™2 is a convolution operator with an
explicit kernel Q(x — y, E) [293, Theorem IX.29]. It has the following properties
(see [308, Theorem 3.1, Chap. 6]).
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L Qx—-y,E)=0,

O(x —y*™) if v>4
2. Qx—p,E)=<0(n|x —y|™) if v=4 as |x —y|—=0,
C if v<3

3. sup ePQ(x—y,E)>0 as E— o, forany 6>0 .

lx=y|>4
Using the elementary fact that

sup | [V()IPdy < o

x |x-yl<1

for any VeS,, it is not hard to see that VeS, if and only if
sup, [Q(x — y,E)|V(»)|?d*y -0 as E —oco. This gives the result, since
Q(- =y, E)|V(y)|* is a positive integral kernel and || 4|, = [ 41|, holds for
any A with positive integral kernel. [

The above result has an L? consequence by a standard “duality and inter-
polation” argument:

Corollary 1.8. If Ve S, then
((Hy + E)'V|,,—>0 as E—> oo . (L.3)

Proof. Let V €8§,. Then it is enough to show that
[(Ho + EY ' V13,2 < |(Ho + B2V || o0 (1.4)

since (1.3) follows then by Theorem 1.7. Assume for a moment that V is bounded,
and consider the function

F@):=|V[*(H, + E)2|V|*" % zeC .

F(z) is an operator-valued function which is L' and L*-bounded and analytic in
the interior of the strip {zeC|Reze[0,1]}. Thus, by the Stein interpolation
theorem [293, Theorem IX.21] and, using that (by duality)

[(Ho + EY 21V o = NNVIP(Ho + EY 211
we get

[IVIH, + E) 2V 2.2 < [(Ho + E) 2 IV 0 -
Since

1IVIH, + E) 2 1Vi |22 = [|(Ho + B VI

(1.4) foilows for bounded V’s, and by an approximation argument, also for all
VeS,, O
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Remark. Note that Corollary 1.8 implies that if V' € S,, then it is H,-bounded with
Hy-bound 0 by Proposition 1.3 (Proposition 1.3 has to be slightly modified for
the semibounded case we are considering here).

One might think that since S, is telling us something about L*-bounds and
L™ is “stronger” than L2, there would be no way going from L2-bounds to S,.
So the following theorem is interesting,.

Theorem 1.9. Suppose there are a, b > 0 and a é with 0 < é < 1 such that, for all
0 <e< 1andall pe D(H,)

IVel3 < ellHool + aexpbe™)llol3 .
Then VeS,.

Proof. We just have to pick the right ¢’s. Fix yeR", teR", and consider the
integral kernel

@(x):= \/exp(—tHo)(x,y) .

Then, noting that ||@[|, = 1 and (by scaling)
|Ho@ll, = ct™2 for suitable ¢ >0
we have
[exp(—tH)|VI*](y) < cet™2 + aexp(be?) . (1.5)

Now, take e:=(1 + |Int|)”", where y:=2/1 + ), and multiply (1.5) by
texp(—tE) for E > 0. Then the R.H.S. of (1.5) is integrable in ¢ and its integral
goes to zero as E — co. Now if we use the identity

(Ho + E)™2 = { e Hoe™E gt
0

we get (1.2), and therefore Ve S, by Theorem 1.7. O

The second class of potentials we are considering here is K, which is the
form analog of S,. This type of potentials was first introduced by Kato [193].
See also Schechter [308] for related classes. K, was studied in some detail by
Aizenman and Simon [7], and Simon [334].

Definition 1.10. Let V be a real-valued measurable function on R*. We say that
VeK, if and only if

a) lim[sup [ y|2_”|V(y)|d“y:| =0, if v>2

)0 x |x—y|<a
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b) limI:sup { Inj(x— y)|“1|V(y)|d“y:| =0, if v=2
al0 x |x—y|<a

¢ sup [ |[V(Wldy<oo, if v=1.

x |x—y|<1

We also define a K,-norm by

IVik,:=sup | IK(x,y;V)IV(y)ld”y

x |x—y|<
where K is the kernel in the above definition of K. Then virtually everything
goes through as before.

Theorem 1.11 [7]. Ve K, if and only if

lim [[(Ho + E) ' [V] 0,00 =0 .
E-x
The proof is the same as in Theorem 1.7.

Theorem 1.12 [7]. Suppose there are a, b > 0 and a § with 0 < é < 1 such that,
forall0 <& < 1and all peQ(H,)

{p,|VIp) < e, Ho@) + aexp(be ™) ol .
Then VeK,.

The proof is again like that in Theorem 1.9 above (see also [7, Theorem 4.9]).
Remarks. (1) Both of the classes S, and K, have some nice properties:

a) If u <, then K, = K, and S, = §,. By these inclusions we mean the
following. Suppose W e K, (resp. S,,), and there is a linear surjective map T: R* —
R* and V(x):= W(T(x)). Then Ve K, (resp. S,). The canonical example to think
of here is an N-body system with v = Ny, where a point xe R is thought of as
an N-tuple of pu-dimensional vectors x = {x,,..., Xy and Tx:= x; — x; for
some i,je{l,..., N}, i #J.

b) There are some L ,-estimates which tell you when a potential is in K,
(resp. S,), i.e.

v
- fi >4
2. cS, if {’”2 or v=

p=2 for v<4

and

v
L K, if p>§ for v>2

unif =

p=2 for v<2
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where

L= {Visup [ [V(y)IPdy < 0} .

x |[x—y<1

The proof is a straightforward application of Holder’s inequality (see [7, Propo-
sition 4.37]).

(2) If VeK,, then V is H,y-form bounded with relative bound 0. This follows
again analogously from Proposition 1.3(ii), Theorem 1.11 and a corollary ana-
logous to Corollary 1.8.

The classes K, and S,, however, are not the “maximal” classes with respect
to the perturbation theorems, that is, one just misses the “borderline cases.” This
can be seen in the following:

Example. (a) Let v > 3 and
V(x):=|x|"?|In]x|| % .

Then Ve K, if and only if § > 1, but V is Hy-form bounded with bound 0 if and
only if 6 > 0.

(b) Let v>5 and V as in (a). Then VeS, if and only if 4 > 1/2 but it is
H,-bounded with bound O if and only if 6 > 0.(a) is a consequence of [ 7, Theorem
4.11] and general perturbation properties (see [293, Chap. X.2]). (b) has a similar
proof.

Remark. The above example shows that it is false that S, is contained in K,.

1.3 Kato’s Inequality and All That

We will now sketch a set of ideas which go back to Kato [193], and which were
subsequently studied by Simon [322, 327] (see also Hess, Schrader and Uhlen-
brock [163]).

Let us first consider a vector potential a (magnetic potential), and a scalar V
(electric potential) satisfying

acLi (R)
VeLl.(R), V=0, (1.6)
Then the formal expression
Ti=(—iV—a?+V
is associated with a quadratic form h,,,, (called the maximal form) defined by
Ohmar) = {9 e L2(R)|(¥ — ia)pe LAR"Y, V2o e LA(R")}

and
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max (P, W) Z < 6 — iaj)(p, (61 — laj)(//> + <V1/2(P, V1/2¢>

for @, ¥ € Q(hyay); (6;:= 6/0x;). Note that h,,,, is a closed, positive form (since it
is the sum of (v + 1) positive closed forms), and therefore there exists a self-
adjoint, positive operator H associated with h,,,,, with

max?

Q(H) = Q(hpax) and
CHQ,W» = hou( ) for @,y eD(H) [196] .

Note also that (1.6) are the weakest possible conditions for defining a (closable
positive) quadratic form associated with T on C$(R”). The closure of this form
[which is the restriction of A, to C(R”)] is called h,,;,,. Our first theorem now
says that these two forms coincide. Thus, the self-adjoint operator associated
with the formal expression 7 is, in a sense, unique.

Theorem 1.13 [329, 195]. C$(R") is a form core for H.
We give only a sketch of the proof (see [329]).

Step 1.

e L2(R") » L*(R"), teR* . 1.7
We only need to show that

le™ ol <e™lg|, @peLl*(R") (1.8)

(which is the semigroup version of Kato’s inequality, sometimes also called
Kato-Simon inequality or diamagnetic inequality; see [327]), since (1.7) follows
from (1.8) by using Young’s inequality and the fact that exp(—tH,) is a convolu-
tion with an L2-integral kernel.

We know that H is a form sum of v + 1 operators. Therefore, we can use a
generalized version of Trotter’s product formula (shown by Kato and Masuda
[198]) and get

t t t t i
exp(—tH)=s — lim [exp <E Df) exp (; Df) ...exp (; Dv2> exp (—; >:| ,
(1.9)

where
D=0, —ia;, je{l,...,v}.

Now, let

)= [ alXe, os Xjmts Yo Xyt -0 X,)dY
0
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Then [329]
—iD; = e¥(—ig)e i .

(Note that, in a “physicist’s language”, this means that in one dimension, mag-
netic vector potentials can always be removed by a gauge transformation.)
Therefore

t
exp (Z Djz> = exp(id);exp <% 8}) exp(—i4;) , so that
lexp(tDf)o| < exp(tdf)|@l, @eL*(R") . (1.10)

Now (1.8) follows from (1.10), (1.9) and |exp(—tV/n)| < 1.

Step 2. L*(R*) n Q(H) is a form core for H.
This follows from (1.7) and the fact that Ran[exp(—tH)] is a form core for
H by the sepectral theorem.

Step 3. Loymp(R*) N Q(H) is a form core for H [where L3 op(R) = {pe L3(R)|
@€ L*(R"), supp ¢ is compact}].

This follows by a usual cut-off approximation argument, i.e. choose ne
C3(R”) with # = 1 near 0, then consider, for any p e L* N Q(H)

«pn(x):=n(§><p(x) (neN)

then @, — ¢, (n - o0) in the form sense. Now the proof will be finished by

Step 4. C{(R") is a form core for H.

This follows by a standard mollifier argument, i.e. choose j & C5’(R”) such that
{j(x)d*x = 1; set j,:= e *j(x/e), then for PeLy, NOH) ¢, :=j,*0eCy and
@, = @, (e = 0) in the form sense. []

Note that in the last two steps, it is crucial that the approximated function
isin L*.
The next theorem is also a well-known result [193].

Theorem 1.14. Let ¥V > 0, Ve L% (R*) and a = 0. Then H:= H, + V is essen-
tially self-adjoint on Cg (R"), i.e. CF (R") is an operator core for H, and its closure
is the form sum.

The proof is exactly the same as in Theorem 1.13 (replacing form cores by
operator cores and form domains by operator domains) with one additional step.
Once one notices that L*(R*) n D(H) is an operator core for H one uses the
formula

H(no) =nHo +2Vy-Vo — @an (1.11)



