A BUTE BODN >t

USING
MICROSOFT
OMPILED
BASIC

sing
Microsoft

Compiled
BASIC

Murray L. Lesser

McGraw-HilLBook Company

New York / St.Louis / San Francisco / Auckland
Bogota / Hamburg / Johannesburg / London / Madrid
Mexico / Montreal / New Delhi / Panama / Paris
Sao Paulo / Singapore / Sydney / Tokyo / Toronto

Library of Congress Cataloging in Publication Data

Lesser, Murray L.
Using Microsoft Compiled BASIC.

Bibliography: p.

Includes index.

1.Basic (Computer program language) 2.CP/M-80
(Computer operating system) LTitle. ILTitle:
Using Microsoft Compiled B.A.S.I.C.
QA76.73.B3L46 1985 001.64 84-3898
ISBN 0-07-037302-7

Copyright © 1985 by McGraw-Hill, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the United States Copyright Act of 1976, no part
of this publication may be reproduced or distributed in any form or by any means, or
stored in a data base or retrieval system, without the prior written permission of the
publisher.

1234567890 DOC/DOC 8987654

IZBN O0=07=037302~7

The editors for this book were Stephen G. Guty and Esther Gelatt, the designer was
Mark E. Safran, and the production supervisor was Thomas G. Kowalczyk. It was set in
Century Schoolbook by University Graphics, Inc.

Printed and bound by R. R. Donnelley & Sons Company.

ASMT™ CP/Me, MAC™ SID™, and ZSID™ are trademarks of Digital Research, Inc.
IBMS® is a trademark of International Business Machines Corp.

Microsoft® is a trademark of Microsoft Corporation.

Qume?® is a trademark of Qume Corporation.

7-80% is a trademark of Zilog Corporation.

Portions of CP/M Operating System Manual used with the express written permission
of Digital Research. All requests to use said information must be obtained from Digital
Research in writing.

Using Microsoft® Compiled BASIC

For Jean

Preface

When I bought my first microcomputer in 1979, the only software
included in the price was the manufacturer’s version of CP/M 1.4
(since replaced by version 2.2). As I intended to use the machine
for writing and record keeping, I purchased the “word-processing”
program recommended by my dealer (since abandoned by both of
us because the publisher refused to fix the bugs) and an early ver-
sion of the Microsoft BASIC Compiler.

Although I had been associated with the use or design of digital
computers for 30 years, I hadn’t programmed professionally since
1954 and had never used a compiler or macro assembler. So, I spent
the next few years learning to use both properly.

A little was learned by carefully reading between the lines of the
manuals and the few pertinent articles in the small-computer mag-
azines. Most of what I learned, I learned from running experiments
on the system—trying things and seeing what would happen—and
generalizing from the results.

The most important thing I learned was not in the literature:
The best way to use the compiler is to take advantage of the dif-
ferences (rather than the similarities) between the compiled and
interpreted versions of Microsoft’s BASIC-80. Unlike the inter-
preted version, compiled BASIC is an excellent language in which
to write well-structured, high-performing, useful data-processing
programs that are easy to read, easy to debug, and easy to modify
later.

This is the book I wish had been available when I began using
the BASIC compiler. Since there isn’t room for everything, I have
concentrated on the most important aspects of using compiled
BASIC under CP/M. I have omitted details (both of the language
and of CP/M) that are explained fairly clearly in the manuals or
are of very limited interest. If you can’t find what you need in this
text, read the appropriate manual. If it isn’t there, you will have to
run your own experiments.

xiii

xiv Preface

I wish to thank Byte magazine, the Microsoft Corporation, and Digital
Research, Inc., for permission to reprint portions of their copyrighted
materials. Neither Microsoft nor Digital Research has reviewed the con-
text in which I have used their material, and neither is responsible for any
errors I may have committed.

My litigious friend tells me I should warn you that although permission
is freely granted for noncommercial use of the illustrative programs listed
herein, you use them at your own risk. Neither the author nor the pub-
lisher makes any warranties concerning the program listings and neither
assumes any responsibility or liability of any kind for errors or for the
consequences of any such errors.

MURRAY L. LESSER

Contents

Preface Xiii

1. Introduction 1
About this Book 1
Conventions Used in the Text 2
The Art of Programming 3
Programming Manuals 4
Hardware/Software Considerations 5
For Further Reading 6
Notes 7

2. Beginning BASCOM 9
Basic BASCOM Concepts 9
Getting Started 12
A Peripheral-Control Module 14
A Bit of Testing 16
A LIST Utility 17
Notes 18
Listings 2-1 through 2-4 20

3. A CP/M Review 25
The CP/M Control Program 25

CCP 25
BDOS 26
CBIOS 27
Locating the Control Program Entries 28
CP/M Transient Utilities 30
SYSGEN 30
MOVCPM 31
XSuB 31
DDT 32
PIP 32

Version Differences 33

vii

viii

Contents

CP /M Reliability
Notes
Listings 3-1 through 3-3

BASCOM Variables

Passing Variables to Subroutines

Calling by Name
Using Named COMMON
Passing Arrays
Variable Types
Floating Point
Integer
String

The BASLIB/OBSLIB Difference
Data Space and Program Space

A Benchmark Example
A Decision Algorithm
Notes
Listings 4-1 through 4-3

Some BASIC-80 Niceties

LISTER

Error Trapping

String Operators
INSTR()

MID$(), LEFT$(), and RIGHTS()
CHR$(), ASC(), and VAL()

INKEY$ and INPUT$()
Defensive Programming
Bringing Up LISTER
Notes

Listing 5-1

Assembler Macros

Defining a Macro

Conditional Macro Expansion
An Assembler Version Test
Redefining Macros
Source-Code Libraries

The Built-In Repeat Macros
An Enhanced FINDER
Rolling Your Own

34
35
37

41

41
41
42
42
43
43
43
44
46
46
47
49
49
51

55

55
56
57
58
58
59
59
60
60
62
63

67

67
68
69
70
71
72
74
75

10.

Notes
Listings 6-1 through 6-5

Using CBIOS Functions

Direct Console Input
Reading and Writing Diskette Sectors
Looking at CCP
Implementing Autoload
GOPHER: A Pseudo Warm Boot with Autoload
Notes
Listings 7-1 through 7-5

Some BASCOM Utilities

Command-Line Generators
LINK: A Generator for LINK-80
COMPILE: A Generator for BASCOM

Filters
A BASCOM Filter Algorithm
Common Filter Code
Application-Dependent Code
Additional Filters by Editing

Notes

Listings 8-1 through 8-5

Program Structure

Loops and Loop Control
FOR . .. NEXT Loops
WHILE . . . WEND Loops
Conditional GOTO Loops

Switches

The Much-Maligned GOTO

Operators
The Assignment Operator
Relational Operators
Logical Operators

“‘Structured Programming’’

Notes

Listings 9-1 through 9-3

Stacked Execution Utilities

SUBMIT and $$$.SUB
A Compile and Link Utility

Contents ix

75
77

87

87
89
90
91
93
95
97

107

107
108
109
111
112
113
114
116
116
118

127

127
127
129
130
130
131
132
132
133
134
134
135
137

143

143
144

X

11.

12.

13.

Contents

An Assemble, Link, and List Utility
Replacing Library Subroutines
Another Use for $$$.SUB

Notes

Listings 10-1 and 10-2

Using BASIC-80 Files

Some Nomenclature

File Basics

A Record-Keeping Program
The Program Structure
Sequential Files
Random Files
Bringing Up the Program
Limitations of the Program
Listing the Account Files

Notes

Listings 11-1 through 11-3

Recovering Erased Files

CP/M File Arrangement
Erasing a CP/M File
Using the Recovery Programs
READIR and FIXDIR
READIR
GETIT
Customizing the Skew Table
FIXDIR and PUTIT
Limitations to READIR and FIXDIR
READIR2 and FIXDIR2
READIR2
DISK and GETIT2
FIXDIR2 and PUTIT2
Notes
Listings 12-1 through 12-6

Copying Output to a File

FILER Overview

Stack Operations

Determining the System-Specific Addresses
Finding BDOS's Saved Stack

146
147
149
149
161

157

167
168
160
160
161
162
164
167
167
168
170

181

181
182
183
185
185
186
187
191
192
193
193
193
195
195
197

209

209
210
212
213

Contents xi

Finding CBIOS’s DMA Pointer 214

The Temporary File Control Block 215
Transient FILER 216
Resident FILER 218
FILER Limitations 219

Other Spooling Routines 220

Notes 220
Listing 13-1 222

14. Debugging Practice 229
General Considerations 229
Pretesting to Avoid Debugging 230
Debugging RECORD84 231
Debugger Diagnostics 233
Locating GETIT2 233
Debugging GETIT2 236
Scrutinizing the Inscrutable 237

Tracing GOPHER 240

Some Parting Observations 243

Notes 243
Listings 14-1 through 14-3 245
Appendix A System Constants 249
Listing A-1 250
Appendix B Macro Definitions 253
Listings B-1 and B-2 254

Index 259

Introduction

There are many books for beginners in computer programming.
This is not one of them. It is an intermediate text dealing with writ-
ing programs with BASCOM (Microsoft’s compiled BASIC) using
some of the innards of CP/M. It tells you how to make temporary
minor modifications to your CP/M system, under program control,
so you can do things you would like to do but can’t under the nor-
mal CP/M interface protocols. But it won’t tell you how to make
major modifications to your system or how to get rich by writing a
best-seller program. Rather, it describes a set of techniques to
make the programs you write for your own use easier to write, eas-
ier to debug, easier to use, and easier to modify when the urge
arises.

About This Book

This book is for people who have some background in program-
ming with some version of BASIC but not enough to have devel-
oped too many bad habits. It helps if you can write and run simple
assembly-language programs under CP/M, as one of the strengths
of BASCOM lies in the ability to extend the language easily by
adding called assembly-language subroutines. If you haven’t had
any such experience, you may find this book hard going, but you
can manage with the aid of some elementary texts I will list later.

In writing the book, I have assumed you have some intellectual
curiosity and are not interested solely in a how-to book that
doesn’t contain some why-to as well. I, for one, can’t remember a
set of complicated rules without a structure to hang them on.

For programming, the structure is a conceptual model of the

2 Chapter One

entire system as seen by the programmer, which includes the operating
system interface and even—to some extent—the hardware. Thus, there
are several tutorials giving my conceptual model of the important parts of
the structure of BASCOM and CP/M, with examples of BASCOM and
assembly-language programs I have found useful in my own programming
activities. This model is highly oversimplified and may be wrong in some
details. However, I have found it sufficient unto the need.

I haven’t written a programming manual for BASCOM and CP/M. I
am assuming that you have at least skimmed over the manuals that came
with your distribution diskettes; I don’t intend to repeat much of the
detail. In the long run, those manuals will become very familiar to you,
and you will figure out their idiosyncrasies as you practice using the lan-
guage and the system. However, I will try to clarify some of the more
obscure points in them and correct the errors I know about.

Since it is impossible to discuss the various facets of using BASCOM
and CP/M in a completely sequential manner, there will be occasional real
or implied forward references—at least to the extent that I will sometimes
use programming constructs that won’t be discussed until later in the
book. Please be assured that when I do so, the programming manual ref-
erences to those constructs are correct. You should refer to the applicable
manual if you need more information to understand the usage.

Although this book deals largely with developing useful BASCOM pro-
grams running under CP/M, much of the material is applicable (with
modification) to programs written in MBASIC (the interpreter version of
BASIC-80). There is great emphasis on assembly-language subroutines,
which are easily called by programs written in BASCOM. Such subrou-
tines can also be called (but not as easily) from MBASIC, and most of the
subroutines given in this book can be modified for that use. Of course,
there is no way to get BASCOM'’s performance, program integrity, or pro-
gram readability when using MBASIC.

Conventions Used in the Text

I dislike rewriting computer history to fit modern typographic styling.
Thus, language and proprietary program names whose inventors wrote
them in all caps are left in their original form (e.g., FORTRAN, BASIC).
Names that were not so written by their inventors are given as proper
nouns (e.g., Pascal, Ratfor).

When referring to the various aliases of Microsoft’s BASIC-80 version
5, I will use BASIC-80 for the general case, BASCOM if the reference
holds only for the compiler version, and MBASIC if I mean the inter-
preter version. Plain BASIC will refer to the language in general, while

Introduction 3

Basic means what it means in English (e.g., CP/M’s Basic Disk Operating
System has nothing to do with the BASIC programming language).

Generic terms used in the programming art, particularly those associ-
ated with file controls, are given normal lower-case spelling (e.g., open,
close). However, commands in BASIC-80 that may be spelled the same
but have content well beyond the generic meaning are given in all caps
(e.g., OPEN, CLOSE).

Since much of the material deals with subroutines written in assembly
language and called by BASIC-80 programs, I will use the term called
subroutines for these, to distinguish them from subroutines written in
BASIC-80 and reached through the GOSUB command.

Superscript numbers in the text refer to notes at the end of each chap-
ter.! Listings are found at the end of the chapter in which they are cited,
following the “Notes” section.

The Art of Programming

Programming is not a science, not even a branch of mathematics. Pro-
gramming is an intellectual art form somewhat akin to writing essays. The
major requirements in either case are to think in logical progression and
to be able to convey your thoughts, unambiguously, in a written language.
Fortunately, it is easier to convey unambiguous thoughts to machines
than it is to people.

If you didn’t think the problem through completely and unambigu-
ously, the program will have bugs in it. When a running computer runs
into a bug, the results are likely to be highly surprising; the machine does
what you told it to do not what you meant it to do.

Since a large computer program is probably the most complex structure
made by human beings, it is practically impossible to guarantee that such
a program is bug-free. Thus, almost all proprietary software has bugs in
it. Most of your and my programs that cannot be listed on one page also
contain bugs. This is the reason for structured programming: To attempt
to reduce a complex program into many simple programs that can be writ-
ten and tested independently and then linked together to make up the
final program.?

The obvious bugs in proprietary programs were removed by conscien-
tious testing before putting the software into service. Successful testing
requires making test runs at what Kernighan and Plauger call the “bound-
aries . . . of program operations,”® where there are changes in control due
to a change in variable.

But some bugs are very subtle; they may be value-dependent in a not
obvious manner. These show up rarely and are found only when lots of

4 Chapter One

users have used a program lots of times. When enough users have found
and reported serious bugs, the publisher of the program permits the pro-
grammers to put out an update.*

One hallmark of a good program is that the listings are intelligible to
human readers. The following factors lead to readability:

= The program is organized properly (structured).

= The terms used in the language itself remind the reader of their
operation.

= The variable names are properly chosen to have meaning.
® The program listing is neatly arranged on the sheet of paper.
= The program is properly commented.

Six months after you have written the program, you will want to revise
it. Unless you can read it, you will never be able to remember how that
clever programming works! I am not going into great detail on how to
write programs for human consumption. You will have to learn from
example.

Another hallmark of a good computer program is that the input and
output formats are arranged for the convenience of the users of the infor-
mation not for the convenience of the programmer. This is the most
important factor to keep in mind when writing a program, since the only
purpose served by a computer program is to change information from one
format to another.’ The input format (along with information contained
in internal intermediate files) is changed to the desired format for output,
and the internal files are updated accordingly. Since much of this format
manipulation is string handling, BASIC-80 is a very convenient language
for most data-processing applications. It contains a plethora of string-
handling and input/output commands and functions.®

Programming Manuals

All proprietary (purchased) software comes with some form of documen-
tation, commonly referred to as the manual. Programming manuals vary
from a single page to an elaborate book in a fancy binder. All suffer from
the same disease. They give the information somebody thought you
wanted in order to run the software; they do not give the information you
need. One reason for this sad state of affairs is that individual needs vary.
If you are a beginner, you want a manual that goes into excruciating detail
about how to use the program. As you gain experience, you prefer what
programmers call a reference manual.

Introduction 5

A good manual is well supplied with listings showing usage examples.
Learn to read and understand those listings; sometimes they contain more
information than does the text.

Besides being excellent examples of poor exposition, most program-
ming manuals contain erroneous vestiges left over from earlier editions of
either the program or the manual. Sometimes program changes are run-
ning ahead of manual updates. The easiest way to resolve differences
between your understanding of the manual and the way the program
actually works is by direct experimentation. It is also the easiest way to
learn how to use the program or language.

'Hardware /Software Considerations

According to the Microsoft manuals, BASCOM will run in a usable mem-
ory as small as 48K. But more memory will allow the BASCOM compiler
to do all the optimizing of which it is capable.

My microcomputer is a 64K Z-80 system with two 8-inch diskette
drives. All programs listed have been tested under my hardware vendor’s
version of CP/M 2.2 and (unless otherwise stated) his version of CP/M
1.4. However, not all CP/Ms are created equal, and some of the programs
may give strange results on your system. If this happens to you, you will
have to run your own experiments to find and fix the bug—whether it is
mine or is in your version of CP/M. At least you will have the listings for
mine.

My terminal is a Perkin-Elmer 550, and my printer is a Qume Sprint
5. I have carefully segregated the peripheral-hardware-dependent pro-
gramming into called subroutines. Your first task will be to rewrite them
to fit your own configuration.

Almost all assembly-language listings are in Z-80 mnemonics. The
exceptions are a few 8080 macros that simulate needed Z-80 convenience
functions—for those of you who are using an 8080 or 8085 system. If you
own a Z-80 system and are still programming in 8080 mnemonics, you are
working too hard.

You cannot link assembly-language programs to compiled BASCOM
programs unless you use an assembler that produces Microsoft .REL files.
Thus, you cannot use Digital Research’s ASM or MAC assemblers. You
might as well use the Microsoft MACRO-80 assembler that came bundled
in with your compiler, along with Microsoft’s linker (LINK-80).

Remember that CP/M is an 8080 operating system, even if you are run-
ning it on Z-80 hardware. Hence, the default mode of MACRO-80 running
under CP/M is 8080 mnemonics. You must tell the assembler, each time,
if you want it to understand Z-80.

