

Design of Arithmetic
Units for Digital
Computers

John B. Gosling

Department of Computer Science,
University of Manchester

© John B. Gosling 1980

All rights reserved. No part of this publication may be reproduced or
transmitted, in any form or by any means, without permission.

First published 1980 by -~ -+

THE MACMILLAN PRESS LTE'),'*

London and Basingstoke 4
Associated companies in Delhi Dublin
Hong Kong Johannesburg Lagos Melbourne
New York Singapore and Tokyo

Typeset in 10/12 Press Roman by
STYLESET LIMITED

Salisbury - Wiltshire

and printed in Great Britain by

J. W. Arrowsmith Ltd, Bristol

ISBN 0 333 26397 9
ISBN 0 333 26398 7 pbk

This book is sold subject to the standard conditions of the
Net Book Agreement.

The paperback edition of this book is sold subject to the condition that it
shall not, by way of trade or otherwise, be lent, resold, hired out, or

otherwise circulated without the publisher’s prior consent in any form of
binding or cover other than that in which it is published and without a similar
condition including this condition being imposed on the subsequent purchaser.

Design of Arithmetic Units for Digital Computers

~

Macmillan Computer Science Series

Consulting Editor
Professor F. H. Sumner, University of Manchester

S. T. Allworth, Introduction to Real-time Software

G. M. Birtwistle, Discrete Event Modelling on Simula

Richard Bornat, Understanding and Writing Compilers

J. K. Buckle, The ICL 2900 Series

Derek Coleman, 4 Structured Programming Approach to Data*
Andrew J. T. Colin, Fundamentals of Computer Science

Andrew J. T. Colin, Programming and Problem-solving in Algol 68*
S. M. Deen, Fundamentals of Data Base Systems*

J. B. Gosling, Design of Arithmetic Units for Digital Computers
David Hopkin and Barbara Moss, Adutomata*

Roger Hutty, Fortran for Students

H. Kopetz, Software Reliabilitj/g

A. Learner and A. J. Povi?ell,)l'n Introduction to Algol 68 through Problems*
A. M. Lister, Fundamentals of Operating Systems, second edition*
Brian Meek, Fortran, PL/I a’rid the Algols

Derrick Morris and Roland N. Ibbett, The MUS Computer System
John Race, Case Studies in Systems Analysis

L. R. Wilson and A. M. Addyman, 4 Practical Introduction to Pascal

* The titles marked with an asterisk were prepared during the Consulting Editorship of
Professor J. S. Rohl, University of Western Australia.

Preface

The original motivation for the development of digital computers was to make it
possible to perform calculations that were too large to be attempted by a human
being without serious likelihood of error. Once the users found that they could
achieve their initial aims, they then wanted to go into greater detail, and to

solve still bigger problems, so that the demand for extra computing power has
continued unabated, and shows no sign of slackening. This book is an attempt to
describe some of the more important techniques used today, or likely to be

used in the near future, to perform arithmetic within the computing machine.

There are, at present, few books in this field. Most books on computer design
cover the more elementary methods, and some go into detail on one or two more
ambitious units. Space does not allow more. In this text the aim has been to fill
this gap in the literature.

In selecting the topics to be covered, there have been two main aims: first, to
deal with the basic procedures of arithmetic, and then to carry on to the design
of more powerful units; second, to maintain a strictly practical approach. The
number of mathematical formulae has been kept to a minimum, and the more
complex ones have been eliminated, since they merely serve to obscure the
essential principles.

At the practical level, discussion has been restricted to the binary number
system. Some may argue that there should be a discussion of other bases, and
perhaps of a redundant number system (for example, a residue system). None of
these has found great acceptance, and does not appear to be about to do so. For
practical consideration also, iterative arrays have been omitted (unless the
simultaneous multiplier is considered to be such). The most controversial
omission is a discussion of error-detecting techniques and fault-finding considera-
tions. These topics require more space for proper treatment than is available
here.

The readership of the book is expected to range from undergraduate students
to computer designers. First-year students might find it profitable to restrict
consideration to chapter 2, sections 3.1, 3.2, chapter 4 and perhaps the first
three sections of chapters 5 and 6. Final-year students should be able to tackle
the whole of the book. It is hoped that the book will also prove a useful work
for those involved in the design of real machines.

X Preface

For the benefit of students, a number of tutorial and examination questions
have been appended to most chapters. Those with acknowledgements are
reprinted by permission of the University of Manchester from examination papers
of the Department of Computer Science and of Electrical and Electronic
Engineering. Answers to numerical parts are provided at the end of the book,
together with brief notes for some other questions.

ACKNOWLEDGEMENTS

The author would like to express his thanks to the many people who have in

some way contributed to the book. Professor D. B. G. Edwards of the Computer
Science Department in the University of Manchester and Professor D. Aspinall of
UMIST are responsible to a large degree for providing a baptism in the subject,

as well as much subsequent help. The former has provided the opportunities for
much of the practical work. Many helpful discussions have also been held with
Professor D. J. Kinniment of the University of Newcastle, and with E. T.
Warburton of ICL. Dr S. Hollock of Plessey (Research) Ltd has provided the
opportunity for work on the uncommitted logic array mentioned in chapter 3.

Dr L. E. M. Brackenbury kindly commented on the manuscript, and others are too
numerous to mention individually; their colleagueship is none the less appreciated.
Thanks are also due to my wife for her tolerance during the many evenings spent
preparing the work.

J. B. GOSLING

Contents

Preface

1 Preliminary Notes

1.1
1.2
1.3
1.4
1.5

Introduction

Assumptions

Terminology and Cenventions
Number Formats

Cost and Time

Combined Carry-look-ahead—Conditional-sum Adder

2 Addition
2.1 Basic Addition
2.2 The Serial Adder
2.3 The Serial—Parallel Adder
2.4 Carry-look-ahead Principle
2.5 The Block-carry adder
2.6 The Conditional-sum Adder
2.7
2.8 A Comparison of Adders
Problems

3 Multiplication

3.1
3.2
33
34
348
3.6

Basic Multiplication

Speed Improvement

The Simultaneous Multiplier
A ‘Twin-beat’ Technique
The ‘Split” Multiplier

A Comparison of Multipliers

Problems

ix

p—

B S S S I S

co N O

11
15
17
18
19

22

22
24
29
31
33
34
36

Contents
Negative Numbers and Their Effect on Arithmetic

4.1 Introduction

4.2 Representations of Signed Numbers

4.3 Comparison of the Three Representations
Problems

Division

5.1 Basic Division

5.2 Signed Division

5.3 Non-restoring Division

5.4 The Use of Redundancy

5.5 2-Bit-at-a-Time Division

5.6 Iterative Methods of Division

5.7 A Comparison of some Divider Units
Problems

Floating-point Operation

6.1 Floating-point Notation

6.2 Floating-point Addition

6.3 Subtraction and Addition of Signed Numbers
6.4 Normalisation

6.5 Muitiplication and Division

6.6 Mathematical Considerations

6.7 Rounding

6.8 Floating-point-number Format

6.9 Practical High-speed Addition

6.10 Comparison of Negative-number Representations
6.11 Overflow and Underflow

6.12 Error Control

Appendix: A Note on Shifter Design

Problems

Other Functions of the Arithmetic Unit

7.1 Multilength Arithmetic

7.2 Conversions between Fixed and Floating Point
7.3 Variable-length Arithmetic

Problems

Practical Design Problems

8.1 End Effects
8.2 Physical Problems
8.3 Reliability

39

39
40
51
53

55

55
58
59
62
64
66
71
73

74

74
75
71
79
81
82
83
85
91
95
96
98
99
102

105

105
111
113
114

L15

115
117
118

Contents
9 Mathematical Functions and Array Processing
9.1 Transcendental Functions
9.2 Square Root
9.3 Assessment of Function-evaluation Methods
9.4 Array Processing
Bibliography

Answers to Problems

Index

vii
120
120
125
126
127
130
135

137

1 Preliminary Notes

1.1 INTRODUCTION

One of the main pressures for the development of the modern digital computer
was the need to perform calculations that were beyond the capability of a human
operator, partly because of the sheer length of the calculation and partly because
of the likelihood of errors arising through tiredness or other human factors. The
machine should overcome both of these limitations to a considerable extent.
Over the years machines have become increasingly more powerful, and users

have continued to demand more and more capability. Computers have of course
penetrated many other areas than mathematics, but this book is primarily
concerned with the way in which the elementary mathematical processes can be,
and are, implemented in digital computing machines.

The prime intention of the book is to give a practical description of the
algorithms for performing the various operations, and to explain how they are
implemented. Although covering the elementary algorithms described in most
general textbooks on computer design, it will also deal with more advanced
concepts and more powerful units which are generally omitted from these texts.
The selection of algorithms described could be extended considerably, but the
intention has been to restrict the list to those that either add to an understanding
of the processes concerned, or have practical usefulness in the computers of today
and the foreseeable future. In some cases an indication of other possibilities is
given, and the bibliography provides further reading on these topics.

The arithmetic described in this book is limited strictly to binary arithmetic
(base 2), since this is the predominant means of implementation. Decimal
arithmetic must be coded in binary in some way for convenience of machine
implementation. The main area for the use of decimal coding is in finance, and
if the arithmetic is limited to the use of integers (for example, pounds and pence
expressed in pence) then a binary coding is just as good as decimal, and is
considerably faster. Other radices that have been proposed are ternary (base 3)
and negabinary (base —2). Neither of these representations has gained any great
acceptance and probably will not, though such predictions are hazardous to say
the least. Other forms of representation have been suggested, some of which
have error-detecting and/or error-correcting properties. None of these has yet
found wide acceptance.

2 Design of Arithmetic Units for Digital Computers
1.2 ASSUMPTIONS

This text will assume that the reader is familiar with the binary representation of
numbers, and can recognise simple numbers. It will also assume that he is capable
of understanding and following the manipulation of logical expressions in Boolean
form, though knowledge of advanced logical techniques is not required. The
symbols ‘.’, “+’ and an overbar are used to represent the AND, OR and NOT
functions respectively. The symbols used in diagrams are those used in most
manufacturers’ data books. Details of specific commercial devices are not
assumed, though anyone wishing to make use of the design techniques described
would clearly require access to the relevant literature, and in some cases figures
are quoted from these sources without comment.

1.3 TERMINOLOGY AND CONVENTIONS

The meaning of a number of terms used in the text will require a brief explana-
tion. A flip—flop is a temporary storage platform of one bit (binary digit). Two
important forms exist. The ‘D latch’ of figure 1.1 transfers the data on one input,
D, to the output Q whenever the second input, the ‘clock’, is in one state (high

in figure 1.1). When the clock is in the other state, Q remains at the last value of
D prior to the clock change. The second type of flip—flop is a master—slave

type (figure 1.2). This is, in fact, two latches, one clock being the inverse of the
other. The over-all effect is that the input, D, appears at the output, O, following
one edge of the clock waveform. Otherwise D and Q are isolated from each other.

Preset

i

ear

. [] |
o B S N
| 1

Figure 1.1 D-latch flip—flop

Clock

[]]

Preliminary Notes 3

Master Slave
latch latch

p—] 0 b a
Clock

i

Clock

Clock-——’- _r
o———1 I7

Figure 1.2 Master—slave flip—flop

Both types of flip—flop may have a preset and/or clear input (sometimes known
as set and reset), which set Q to binary 1 or O, respectively.

A register is a collection of flip—flops providing temporary storage for a
number of bits. This number is usually a word of the machine. A word is a
number of bits making up the basic numbers in the machine. In modern

machines all the bits of a word are usually handled at the same time (in parallel).

A shift register is a register in which the Q outputs are connected to the D
inputs of adjacent device(s). Figure 1.3 shows a shift register capable of shifting
both ways. With the control signal in the one state, data is shifted left to right.

Application of an appropriate clock edge will cause a shift of one place. With the

control in the zero state, shifting is right to left. Clearly the flip—flops must be
master—slave types to ensure only one place shift per clock pulse.
It is a convention of engineering drawing that signals normally flow left to

right and top to bottom as far as possible. However, in pencil-and-paper addition

it is normal to place the least significant digit on the right, and work right to
left. Thus a carry will flow right to left. In the diagrams in this book the

0 oy
“j|
0|

Qo

Figure 1.3 Bidirectional shift register

Din R

4 Design of Arithmetic Units for Digital Computers

convention used is that familiar from the latter procedure: that is, the least
significant (LS) bit of a number is on the right of a diagram and the most
significant (MS) bit on the left.

1.4 NUMBER FORMATS

Numbers in digital computers are represented in one of two basic forms, fixed
point and floating point. In fixed-point form the binary point (equivalent to the
decimal point) is in a fixed place in the representation. In most computers this is
to the right of the least significant bit, and hence the representation is of integers,
and this will be assumed frequently. The other form of representation, floating
point, is described fully in chapter 6, and is a means of providing an extension of
the range of representable numbers without using more than a single word (two
words for smaller machines). Variations of these forms exist, but are of
insufficient interest from the present point of view.

Arithmetic is generally performed between two numbers. The description here
is mostly in terms of a unit in which one of the numbers is initially held in the
arithmetic unit in a register called the accumulator, and the other number is
supplied from storage and is referred to as the ‘operand’. There is clearly no
incompatibility with other types of unit where both operands are supplied from
storage, whether the storage is registers or another form.

It will also be clear that, with the limited number of bits available in a
computer word, there is always a finite possibility of producing results that are
too large to be held in the representation. For instance, in relation to probability
calculations, 57! is too large a number to be held in many commercial machines.
Yet it is not at all impossible for a program to call for even larger numbers as
intermediate results. The solution to this difficulty is a programming problem,
but it is necessary for the hardware to give warning of unexpected overflows. In
the text this problem is largely ignored except for certain specific sections.
Overflows are not in fact difficult to detect, usually involving the provision of a
few (often only one) guard bits. In the simple case of the addition of two
positive numbers the guard bit is the carry from the most significant bit.

1.5 COST AND TIME

Throughout the book an attempt has been made to give practical figures for
costs and times. Cost is measured on the basis of the number of integrated
circuits (ICs) used. This is a fairly accurate guide, since it is also related to the
printed-circuit (PC) board area, power dissipation and cooling arrangements. It
does not take into account differences in size and dissipation of ICs, however,
and this can have some effect since, for example, an arithmetic logic unit is a

Preliminary Notes

24-pin package which requires almost four times the PC board area of the more
common 16-pin package.

Times of operations are calculated on the basis of the worst-case times
quoted by the manufacturers. Additional allowance might be made for wiring
delays where circuits of the highest speed are concerned. In all cases the times
depend to some extent on the details of the implementation. An accuracy of
+10 per cent is probable, and comparative figures should be at least as good as
this, since they are all made on the same basis. However, the reader is also
referred to chapter 8 in this respect.

Cost figures will, of course, change rapidly as more and more circuitry is
incorporated in each package. However, where systems are implemented on ICs,
the figures given indicate the complexity (and hence the production difficulty)
of such ICs. Changes in speed as technology changes are less important, since
to some extent the figures are relative figures. What cannot be foreseen is what
new algorithms may be discovered which will only be economically viable
because of the higher degree of integration available.

2 Addition

The most important arithmetic operation in a computer is addition. Subtraction
is commonly implemented by the addition of the negative of the subtrahend,
and in this book will not be discussed separately. Both multiplication and
division can be implemented by means of addition and subtraction. In order to
keep the discussion unencumbered with the problems of representing negative
numbers, this chapter will describe the most important techniques for
performing addition, assuming unsigned binary numbers. The effect of
introducing negative numbers, and the implementation of subtraction, will be
delayed until chapter 4. For the purposes of this chapter all numbers will also be
assumed to be ‘fixed point’.

2.1 BASIC ADDITION

Figure 2.1 illustrates the principle of any addition. Two numbers Xy . . . X2.X;
and Yy ... Y, Y, areto be added together. At each digit position the addition
results in a sum, S, and a carry, C. The carry occurs if the sum is greater than 9 in
decimal, or 1 in binary, the ‘sum’ in this case being the sum of X;, ¥; and C;_;.
The box marked ‘+’ performs the addition. Table 2.1 describes the operation of

X3 Y3 X2 Y2 X1 Yy
—_—— = o + + -
Cs l, C2 T c, l
Sa S2 Sq

Figure 2.1 Principle of addition

Addition 7
Table 2.1 Truth table for binary addition

Inputs Outputs

X Y

a

S C

0
1
0
1
0
1
0
1

—_—O O == OO
— = e OO O O
_——— O = O O O

this box for binary numbers. The Boolean expressions for the sum and carry
are
Si=X;YiCi—y + XiYiCi—1 + XiYiCiy + XiYiCia (2.1)

Ci=XYi+XiCi1 +YC;_ 22

These two expressions are in minimal form, but there are several other forms and
groupings of the terms which are useful in particular circumstances. Implementa-
tion of the expression as written can be achieved with a single AND—OR circuit
having up to six inputs and an output. The AND—OR function (or AND—-NOR)
takes very little more time to perform than a simple AND (or NAND) function*.
For present purposes the time to perform the AND—OR function will be
designated ¢, and regarded as a basic time unit. The AND-—OR circuit will be
regarded as a basic cost unit in assessing the relative merits of different adder
designs.

The adder of figure 2.1 is referred to as a ripple-carry adder, since the carry
‘ripples’ through each stage in turn. This corresponds with the pencil-and-paper
procedure. To complete an addition a carry signal may start at the less significant
(LS) end and propagate all the way to the more significant (MS) end. The
following example illustrates this. The ‘C” bits are the carries produced by adding
the 2 bits of the preceding column.

010110101
001001011

o11111110 S
000000001 G
100000000 Final sum

* See manufacturer’s data books.

