KT
ONSTRUCTION

++

jo =
1‘3“1‘“
i
il
nal
1

Y 5 y 4 rf ‘:’ (“a
i' 401920

2

Class Construction

in C and C+ +
Object-Oriented
Programming Fundamentals

Roger Sessions

International Business Machines Corporation
Austin, Texas

E9461536

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

|

-

Library of Congress Cataloging-in-Publication Data

SESSIONS, ROGER.

Class construction in C and C+ + : object-oriented programming

fundamentals / Roger Sessions.
p. cm.

Includes bibliographical references and index.

ISBN 0-13-630104-5

1. Object-oriented programming. 2. C (Computer program language)
3. C+ + (Computer program language) 1. Title.
QA76.64.542 1992
005.1—dc20 91-48099

CIP

Cover design: Lundgren Graphics, Ltd.
Source: Image Bank

Mlustrator: Sandra Lilippucci

Copy editor: Maria Caruso
Acquisitions editor: Greg Doench
Editorial assistant: Rene Wilkins
Prepress buyer: Mary E. McCartney
Manufacturing buyer: Susan Brunke

Trademarks. . .

LATEX is a trademark of Addison-Wesley.

PCTEX is a trademark of Personal TEX, Inc.

TgX is a trademark of the American Mathematical Society.

IBM is the registered trademark of International Business Machines Corporation.

© 1992 by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered in
bulk quantities. For more information, write: Special
Sales/Professional Marketing, Prentice Hall, Professional &
Technical Reference Division, Englewood Cliffs, NJ 07632.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 87 65 432

ISBN 0-13-E30104-5

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL CANADA INC., Toronto

PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

SIMON & SCHUSTER ASIA PTE. LTD., Singapore ¢
EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

In order to find one’s place in the infinity of being,
one must be able both to separate and to unite.

- I Ching
Chun Hexagram — Difficulty at the Beginning
Translated by Richard Wilhelm and Cary F. Baynes

Preface

This book is about object-oriented programming and how the concepts of object-
oriented programming can be applied in C and in C++. The book’s goal is to
demystify object-oriented programming; to show that object-oriented programming
is really just a common sense extension of structured programming; to show
that many of the principles of object-oriented programming are applicable to any
language; and to show that there are just a few new language features in C++ that
must be learned to start using the language effectively.

There are two parts to learning object-oriented programming. The first is
learning the object-oriented paradigm. The second is learning an object-oriented
language, in this case, C++.

Learning both a new paradigm and a new language can be a daunting goal.
The object-oriented paradigm is for most of us a new way of thinking about
programming. The new language we are interested in, C++, is generally regarded
as quite complex, with many new syntactic enhancements over and above C, a
language most consider already complicated enough.

This book simplifies the material through two approaches. The first is by
separating the paradigm from the language. The second is by focusing on only
the important language features.

Separating the paradigm from the language means teaching as much of the
object-oriented paradigm as possible using standard C code. This allows the reader
to become familiar with the concepts of object-oriented programming without
having to deal with the overhead of a new language.

Once the paradigm is firmly established, we start discussing C++. We look at
where C has weaknesses in implementing object-oriented concepts, and how C++
supplements C to address these weaknesses. We purposely ignore the syntactic fluff
of C++ which has little to do with object-oriented programming.

vii

viii PREFACE

Many influential authors suggest using C++ as a better C, even if one never
makes the shift to object-oriented programming. Their reasoning is that C++ is a
superset of C, and therefore any C programmer can start using C++ immediately
by just using the C subset of C++. Then, one can gradually make more and more
use of the new C++ language features as one learns them. Since so few of the
new language features are directly related to object-oriented programming, this
argument goes, why wait to make the paradigm shift?

This argument has one major flaw. The most important advance offered by C++
is not its myriad collection of C enhancements, but its direct support for the object-
oriented paradigm. The programmer who successfully makes the paradigm shift,
but does not know every last C++ feature, will be far ahead of the programmer who
memorizes every C++ ampersand and keyword, but never learns the new approach
to thinking about programming.

This book focuses on the paradigm. We discuss those C++ language features
which are essential to the paradigm and ignore those that are not. Those features
which we do cover are covered in considerable depth, much greater depth than can
be covered in books which cover every detail of the language.

The purpose of this book is to get you to use object-oriented programming. To
teach you the important features of C++. To teach you those features well. You
will then have plenty of time to learn the details, and there are plenty of books
available from which you can learn it.

This book is targeted at two main groups of readers. The first is the C
programmer who wants to learn object-oriented programming and C++. The
second is the large group of C++ programmers who have never made the paradigm
shift, who use C++ but only to write better procedural code than they could have
written in C.

This book teaches object-oriented programming by looking at a lot of object-
oriented code. This book includes over 7000 lines of code, almost all of which is
shown as fully running programs complete with output. Almost every feature we
discuss is demonstrated by actual running code.

Overview of Book

This book can be thought of as having three parts. The first part (Chaps. 1-
5) teaches the C programmer the basic concepts of object-oriented programming,
all in the C programming language. The second part (Chaps. 6-9) teaches the
fundamentals of using C++. The final part (Chaps. 10-12) examines selected C++
issues in much greater depth. This last part will be of interest even to seasoned
C++ programmers.

The next chapter, Chapter 1, provides a quick refresher course in the more
advanced features of C. Although readers are expected to already be familiar with

PREFACE ix

C, many will not have used some of the more advanced features of the language
such as pointers to functions and dynamic memory allocation. These features are
used extensively in object-oriented programming, and all such features are reviewed
in this chapter.

Chapter 2 reviews the concepts of structured programming. We consider a
reasonably complex problem, counting excessively used words in a text file. This
chapter gives a fully coded structured solution to this problem.

Chapter 3 introduces object-oriented programming. It defines most of the
new object-oriented terminology in terms designed to be comfortable to the C
programmer. It discusses the meaning of object-oriented programming. It recodes
the problem of the previous chapter using an object-oriented solution, still in C,
giving us a concrete example to contrast structured and object-oriented approaches
to programming. The main purpose of this chapter is to give an intuitive
understanding of what we mean by the term object-oriented programming.

Chapter 4 introduces more rigor to the concept of object-oriented programming
in C. We discuss how programs must be organized to allow multiple instantiations
of classes and maximum flexibility in the use of classes. As an example of a
well organized object-oriented program, we look at software designed to manage
a doctor’s waiting room. This program uses many object-oriented data structures
designed with minimal compile time limitations.

Chapter 5 discusses some of the problems one faces using C to develop
object-oriented programming. Since C++ was developed primarily to address
these limitations, this chapter essentially discusses the design goals of C-++.
Understanding the issues C++ was designed to address makes it easier to
understand the new syntax of the language, and why the features work the way
they do.

Chapter 6 gives an introduction to object-oriented programming in C++. This
chapter covers the basics: defining classes, instantiating objects, and invoking
methods. We look at C++ code designed to manage point of sale transactions
as an example of how C++ can be used to solve real life problems.

Chapter 7 discusses inheritance, or class derivation. Inheritance is difficult to
program in C, so this concept is introduced now for the first time. Class derivation
is an important feature of C++, providing a fundamental technique for writing
generic and reusable code.

Chapter 8 discusses method resolution in C++ in more depth. It compares
virtual and non virtual resolution, and shows how virtual resolution compares to
the C techniques of using function pointers to achieve code generality. The linked
list class introduced earlier is recoded to make full use of inheritance and virtual
resolution.

Chapter 9 discusses a collection of issues all having to do with managing
memory in C++. We discuss the relationship between memory allocation and
memory construction, between deallocation and destruction. We show how the

X PREFACE

C++ programmer can take full control over allocation, construction, deallocation,
and destruction. We discuss related issues such as reference and constant variable
types and assignment operators.

Chapter 10 shows how the most popular C++ precompiler actually works. We
look at the C code the precompiler emits, and compare this code to our own versions
of C classes. This chapter gives some valuable insight into why C++ works the way
it does, and why it has some of the problems it has.

Chapter 11 discusses some of the problems with C++. This is not to denigrate
the language, only to point out some of the tradeoffs the language makes.

Chapter 12 gives a full, complex example coded in C++. The example is a
text processing program. It is difficult to appreciate how C++ is used in a real
programming environment without looking at a real problem. This chapter solves
a problem, a real problem, with a nontrivial solution. This chapter includes over
18 class definitions and 1700 lines of code. By looking at this code in detail, we can
appreciate the complexities of trying to apply object-oriented programming, and
the design issues one typically faces.

Finally, an epilogue. This gives an overview of what this book has not covered,
and points the reader in some directions for following up on areas of interest.

Acknowledgments

I owe a great deal to a great many people for their support in writing this book.

I especially thank my wife, Alice Sessions, who has not only supported the effort
emotionally, but spent many hours at the word processor entering and editing text.
She also found many of the opening chapter quotations.

Other members of my family have taken a keen interest in this work. My
daughter Emily critiqued quotations and helped choose the title. My son Michael
kept reminding me to “work on the book.”

The book has benefited greatly from some very thorough reviews by some very
knowledgeable people. I am grateful to Stephen Dewhurst of Glockenspiel, Doug
Lea of SUNY at Oswego, and Clovis Tondo of IBM at Boca Raton for their many
helpful suggestions.

I appreciate the support of IBM in this writing. IBM has allowed me to use their
hardware and software, and has provided an environment which greatly nourishes
the creative process. Tony Dvorak, Mike Kiehl, Larry Loucks, and others have
encouraged and supported publishing activity. My co-workers have been very
helpful. Hari Madduri and Craig Becker especially have provided me with valuable
in depth critiques of earlier revisions of this manuscript. Mike Conner was the first
to point out to me the problems of C++ library version incompatibility, one of the
topics in the C++ Problems chapter.

PREFACE xi

Although IBM has kindly supported this effort, it has exerted no editorial
control. The views expressed here reflect those of the author, and not necessarily
those of IBM.

Prentice Hall is, as always, a pleasure to work with. I am greatly indebted to
my editor Greg Doench for his encouragement, and to his assistant Joan Magrabi
for coordinating most of the activity of this book.

Clovis Tondo of IBM Boca Raton designed this book and prepared it for
typesetting. The final camera ready copy was printed with the Chelgraph IBX
typesetter by TYPE 2000, 16 Madrona Avenue, Mill Valley, California 94941.

It seems only appropriate to thank the many writers’ hangouts of Austin, Texas
where so much of this book was written and edited. These are all spots, where, for
the price of a expresso or an inexpensive meal, one can take over a table, spread
out a ream or two of paper, and lose oneself for hours in the process of writing.
These establishments include Martin Brothers Cafe, Chez Fred, Kerbey Lane Cafe,
La Zona Rosa, Texas French Bread Bakery, Elephant Club, University of Texas
Student Union, Upper Crust Bakery, Campus Cafe, and of course, the quintessential
Austin writer’s hangout, Captain Quackenbush’s Intergalactic Dessert and Expresso
Emporium. Thanks to all of you for your tolerance, and to the many other
establishments I have yet to discover.

Finally, I thank the many publishers who have kindly consented to allow me to
reprint from these copyrighted materials:

Don Quizote by Cervantes, translated by Samuel Putnam, Copyright (©) 1951 Viking
Press. Reprinted with permission.

Hinduism by R. C. Zaehner, Copyright © 1966 Oxford University Press. By
permission of Oxford University Press.

Microprocessors and Microsystems (1990) Vol. 14 No. 3, pp. 149-152,
Copyright © 1990, Butterworth-Heinemann Ltd. Reprinted with permission.

On the Composition of Well-Structured Programs by Niklaus Wirth in ACM
Computing Surveys, December 1974. Copyright © 1974 by Association for
Computing Machinery, Inc. Reprinted with permission.

Tao Te Ching by Lao Tsu, translated by Gia-Fu Feng and Jane English, Published
by Vintage Books, Copyright © 1972 by Gia-Fu Feng and Jane English. Reprinted
with permission.

The Analects of Confucius translated by Arthur Waley, Copyright © 1938 by
George Allen & Unwin, Ltd. Reprinted with permission.

The I Ching translated by Richard Wilhelm and Cary F. Baynes, Copyright © 1977
by Princeton University Press. Reprinted with permission.

The Annotated Mother Goose edited by William S. Baring-Gould and Cecil Baring-
Gould, Copyright © 1971 NAL/Dutton. Reprinted with permission.

Contents

Preface

1 C Refresher

1.1 Imtroduction.
1.2 typedef
1.3 Structures and Structure Pointers
1.4 Dynamic Memory Allocation
1.5 Generic Pointers
1.6 Prototyping Functions
1.7 Boolean Functions
1.8 Passingby Value,
1.9 Updating Function Parameters
1.10 Logical Equality Operator
111 StaticData
1.12 Scope Rules
1.13 Function Pointers
1.14 EXerciseso it
2 Structured Programming In C
2.1 Imtroduction.,
2.2 Step-Wise Refinement
2.3 Structured Programming Example
2.4 Structured Solution (Overview)
2.5 Structured Solution (Details)
2.6 Analysis of Structured Solution
2.7 Exercises
3 Object-Oriented Programming In C
3.1 Imtroduction.
3.2 Object-Oriented Terminology

iii

iv

CONTENTS

3.3 Overused Words: The Object-Oriented Solution 57
3.4 The Word Object Class _. 57
3.5 Thelink Class _. 59
3.6 The Linked List Class _ 59
3.7 TheCacheClass 70
3.8 The Word Box Class 74
3.9 Object-Oriented Scanner 76
3.10 Exercises 79
Run Time Resolution in C 81
41 Introduction. 81
4.2 Limited Instantiations 83
4.3 Object Type Inflexibility 92
4.4 Object Method Inflexibility 95
4.5 Current Version of the Linked List Class 102
46 The HMO Problem 106
47 Summary ... 128
48 Exercises 129
C Limitations 131
5.1 Imtroduction....... 131
5.2 Method Resolution by Name = 132
5.3 FlatClasses 7 137
54 Lackof Privacy " 139
5:5 Small Annoyances 7 142
-6 Summary 143
5.7 Exercises " 143
Introduction to C++ Classes 145
6.1 Introduction. 145
6.2 Building a Simple Class ' 147
o 149
6.4 The Class Construct """ 149
6.5 Default Instantiation " "°°° 151
6.6 Class Member Accessibility 151
6.7 New Syntax in Class Method Code 152
6.8 New Syntax for Method Invocation 155
6.9 Default Allocators 7777 157
6.10.Comments , « . vwvun it 162
6.11 Building a Complex C++ Class 163
6.12 Another C++ Example: Order Entry 167

6.13 Helper Functions """ 168

CONTENTS

6.14 The Lineltem Class« « v v v v v v v v v t v v e e e
6.15 The Order Class . . . « v v v v v v i i e e e e e e e e e e

6.16 Exercises

7 Inheritance

7.1 Introduction o i it e e e e e e e
7.2 More on Access Specifiers oo
7.3 More Derivations ot i e e e e e
7.4 Multiple Inheritanceo

7.5 Reuse Thro

ugh Inheritance

7.6 Base Classes As Generic Classes v v v v v v v v v v v v v .

7.7 Reuse Thro
7.8 Exercises

ugh Libraries0 oo

8 Method Resolution in C++
8.1 Introduction. @ o i i i e
8.2 Resolution by Signature
8.3 Virtual Methods 0 i i e e
8.4 Using Virtual Methods
8.5 Abstract Classes i i i e e e e
86 CH++ Versionof Linked List

8.7 Exercises

9 Managing Memory
9.1 Default Memory Management in C++
9.2 Constructors as Type Convertor
9.3 Reference Variables o ..
9.4 const Qualifier — Protecting Reference Variables

9.5 Destructors

9.6 Overloading the Assignment Operator
9.7 Constructors and Assignment Operators
9.8 Managing Memory Allocation
9.9 Hierarchical Constructors
9.10 Hierarchical Destructors
9.11 Managing Memory in Hierarchies

9.12 Exercises

10 How C++ Works
10.1 Introduction« e e e e e
10.2 Default Memory Management

10.3 Overloaded

Method Resolution

10.4 Constructor and Destructor Overriding

vi

10.5 Overriding Memory Allocation and Deallocation . . .
10.6 Assignment Operator
10.7 Virtual Methods
108 EXEICiSes + s s o 9 & s @ @ @ ¢ s s « o o & o w0 wom e moms

11 C++ Problems

11.1 Introduction i e e e

11.2 Poor Separation of Public and Private Information

11.3 Binary Version Incompatibility
11.4 Clashes Between Base and Derived Classes
115 ClassIsNotaClass
11.6 Exercises o v i i i e e e e e e e

12 Final Example

12.1 Introduction Lo,
122 Design Rules
12.3 Overview of Example
12.4 Helper Classes
12.5 Page Layout Classes
12.6 Root Environment Processor
12.7 Option Processing Classes
12.8 Text Processing Environment Classes
12.9 Text Processing Program
12.10Code Reuse
12.118ummaryo e e e e
12.12Postscript Lo
12.13Exerciseso i i e e e

Epilogue
References

Index

CONTENTS

Tzu-kung asked how to become Good. The Master said, A
craftsman, if he means to do good work, must first
sharpen his tools.

- The Analects of Confucius
Translated by Arthur Waley

Chapter 1

C Refresher

1.1 Introduction

Although this book assumes readers have a working knowledge of the C program-
ming language, some of the more advanced features of the language may be unfamil-
iar to some readers. This chapter reviews some important features of the language
which we depend on in developing the techniques of this book.

If you have been using C extensively in a production environment, you may
have no need of this chapter at all. If you have just finished your first course in the
language, you may want to study this chapter carefully. If you fall someplace in the
middle, as most readers will, browse through the chapter and study those sections
which seem new to you. As you continue in this book, return to this chapter on an
“as needed” basis.

If you find yourself unable to understand C programming techniques not covered
in this chapter, unable to understand the material in this chapter, or unable to
complete the exercises at the end of this chapter, you may need to review a C
introductory text.

1.2 typedef

C provides a standard collection of types. When a variable is declared, it can be
declared to be any of the built in C types. For example,

1

2 CHAPTER 1. C REFRESHER

int size;
declares a variable size to be the standard C type int. We can also declare new
types using the typedef construct. These new types can then be used in variable
declarations such as

name myName;
name yourName;

The general rule for using a typedef to define a desired type is
1. Define a variable of the desired type.
2. Place typedef in the front of the line.
For example,
char name([100];
declares a variable which is a 100 character array.
typedef char name[100];
declares a type which is a 100 character array. The lines

name myName;
name yourName;

then declare two variables of type name which, based on our typedef, are 100
character arrays. These declarations are exactly equivalent to

char myName[100] ;
char yourName[100];

but have two advantages. First, the declarations are simpler. Second, type changes
are easier.

By collecting typedefs, in a small number of header files, we can update our
types in one location and propagate them quickly throughout the system. Suppose,
for example, we have 20 variables of type name scattered throughout our system,
and we then discover that we need 110 characters instead of 100 for a name. We
can update every variable of type name by making this one change

typedef char name[110]; /* Changed from 100 */
Without the typedef, we must hunt through possibly hundreds of declarations like

char myName[100];
char who([110];
char what[100];
char where[98];

and decide on an individual basis which of these variables were meant to hold names
and therefore need updating, a time consuming and error prone process.

1.3. STRUCTURES AND STRUCTURE POINTERS 3

1.3 Structures and Structure Pointers

Programs are often responsible for coordinating large amounts of data. One way
of managing the complexity of data is to package together related data items into
what is called a structure. For example, we could define an employee structure that
contains an employee name, address, social security number, and manager name. A
program which manipulates ten thousand employee names, ten thousand employee
addresses, ten thousand social security numbers, and ten thousand manager names
is a complicated program. A program which manipulates ten thousand employee
structures is a simple program. The volume of data is similar for both programs,
but the latter manages the complexity of the data by using structures.

The term structure is commonly used to refer to both the definition and the
allocation of data structures. The definition of a structure defines the size and
contents of a given structure, without actually allocating memory. The allocation
takes an existing definition and allocates memory for such a structure. The
definition of a structure is done exactly once per structure type. The allocation
may be done any number of times, including zero.

A structure is defined using the syntax

struct structureName {
typel iteml;
type2 item2;
etc.

+3 ,

The definition of our employee structure looks like

struct employeeStructure {
char name[100];
char address[100];
char ssnum[20];
char manager[100];

1
A structure is allocated using the syntax
struct definedStructureName thisStructureName;
We can define an instance of the employeeStructure named mary by
struct employeeStructure mary;
Once a structure has been allocated, we refer to its elements using this syntax

structure.item

4 , CHAPTER 1. C REFRESHER

For example, we could print mary’s name by
printf("Name: %s\n", mary.name);

We can also define variables which contain the addresses of structures. The
syntax for this is

struct structName *varName;

so we could have

struct employeeStructure mary; /* Allocate mary */
struct employeeStructure sam; /* Allocate sam */
struct employeeStructure *currentEmp; /* Allocate Pointer */
currentEmp = &mary; /* Set Pointer to mary */

Logically, you would expect to be able to refer to a member of a, structure being
pointed to by this syntax:

(*varName) . item
or in this case,
(*currentEmp) .name
but C provides this more convenient equivalent syntax
varName->item
or in this case,
currentEmp->name

When we pass a structure into a function, we almost always pass in the address
of the structure, and receive it as a pointer. The following types of code fragments
are very common.

struct employeeStructure mary;
struct employeeStructure sam;
/* .. %/
printEmp (&mary) ;
printEmp(&sam) ;

}

void printEmp(employee *thisEmp)

{

VA B Y

We also frequently see structures typedefed. The following statement

1.3. STRUCTURES AND STRUCTURE POINTERS 5

typedef struct employeeStructure employee;

defines employee to be a valid C type, in that it can be used to define other
variables. With this typedef, we can replace these lines

struct employeeStructure mary; /* Allocate mary */

struct employeeStructure sam; /* Allocate sam */

struct employeeStructure *currentEmp; /* Allocate Pointer */

currentEmp = &mary; /* Set Pointer to mary */
by these

employee mary; /* Allocate mary */

employee sam; /* Allocate sam */

employee *currentEmp; /* Allocate Pointer */
currentEmp = &mary; /* Set Pointer to mary */

The following program shows all of these techniques in use.

#include <stdio.h>
#include <stdlib.h>

/* Define an employee structure.
—————————————— - */
struct employeeStructure {

char name[100];

char address[100];

char ssnum[20];

char manager[100];
};

typedef struct employeeStructure employee;

/* Function declarations.

——————————————————————— */
void printEmp(employee *thisEmp);

int main()
{

/* Allocate memory for mary and sam.

employee mary;
employee sam;

