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PREFACE

Intermediate algebra is designed to follow the first two years of high
school mathematics, consisting of introductory algebra and plane geometry.
In the latter the student is introduced to a more or less fully developed
axiomatic system, in which all theorems are demonstrated to be logical con-
clusions of a set of axioms. In the course of this development the mech-
anism of elementary deductive logic is introduced, sometimes tacitly, some-
times explicitly. For many students this is their first and often, regrettably,
their last contact with formal logic.

It is the purpose of this text to continue the development of mathe-
matics along formal logical lines. To this end the first chapter is given
over to a presentation of a minimal amount of logical equipment designed
primarily to acquaint the student with the concept and symbolism of im-
plication and equivalence. Although it is attractive in many ways, the
truth-table approach to the subject of implication was not used because
of its immediate involvement in the paradoxes of material implication (“a
false proposition implies anything.”) It was felt that these difficulties could
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be better dealt with if approached in a more leisurely fashion than time
permits in the usual intermediate algebra course.

Following this, the essentials of set notation and theory are presented
in a separate chapter. The axioms of the real number system and a dis-
cussion of the axiom of order conclude the first section, entitled “Founda-
tions.” The notation and concepts which are introduced in this section are
used throughout the text, and, it is hoped, should materially aid the
student who continues on to precalculus mathematics. The concept and
notation of function are employed consistently.

Full emphasis is placed throughout on what is certainly one of the
most important goals of the intermediate algebra curriculum, the develop-
ment of adequate manipulative skills. Lack of these skills is a serious
obstacle to all further mathematical development, and sufficient exercises
and worked out examples are provided to enable the student to achieve
considerable proficiency. A final chapter on numerical computation covers
some interesting topics not usually included, but which are of considerable
utility.

It is with great pleasure that I acknowledge the assistance I have re-
ceived from a number of kind and helpful people in writing this book.
First, I owe a real debt of gratitude to Professor Harvey Cohn, formerly
Head and presently Professor of the Department of Mathematics at the
University of Arizona. In addition to giving me his constant encourage-
ment, he read parts of the manuscript and made some very important
suggestions and comments for which I am most grateful. Next, I would
like to acknowledge the assistance of Professor William Rice, of St. Peters-
burg Junior College, who read the entire manuscript twice, and whose
many helpful and pertinent suggestions were adopted in almost every
instance.

My sincere thanks are also due to the Mathematics Editor of Harper &
Row, Mr. Blake Vance, whose patience and good humor have meant a
great deal to me. I would also like to thank Miss Karen Judd, Editorial
Supervisor at Harper & Row, for her efforts in making this book become
a physical reality.

Finally, my sincere thanks to Mrs. Sarah Oordt, for her beautiful and
patient typing of the manuscript through its numerous revisions.

CHARLES J. MERCHANT
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. | LOGIC

1.1 ALGEBRA AND LOGIC
Much of algebra is concerned with problems like the following:
Example 1: Prove: that (a + b)(a — b) = a* — b*.

ANSWER
(@a+ba—b)=a-a—a-b+b-a—b-b=a*>—ab+ab—b*=ad*—b*

Example 2: Solve: 3x2 +2x — 1 = 0.

ANSWER
x=% or x=-—1

Example 3: Simplify: {5¢ — [4p + 29 — (p — 39)]}.
ANSWER

The letters and symbols in these examples are simply a very convenient
shorthand for words, and each of these examples could be rephrased without
using symbols or letters at all. Example 3, for instance, could be written, “If,
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from a certain number, a second number is subtracted three times, and this
result is then subtracted from four times the first number plus twice the
second number, and if this result is then subtracted from five times the second
number, the result is minus three times the first number.”

These examples are all statements about numbers. Each one of them says
that one statement about certain numbers is the same as another statement
about the same numbers. In other words, one statement about numbers is to
be manipulated into another, more useful, statement about numbers which
is equivalent to the first statement.

A central problem of algebra is the manipulation of statements concerning
numbers to achieve a desired result. This result may be the solution of an
equation, the simplification of a complicated expression, or the demonstration
of a relationship of more than ordinary interest between certain quantities—a
theorem. The manipulation of a statement is the process of drawing a con-
clusion from the statement or, alternatively, of finding the implication of a
statement. In fact, it may be said that much of algebra is concerned with the
implications which may be drawn from statements about numbers.

The discipline concerned with the whole subject of implication is called
logic. Logic is much broader than algebra, however, in that its subject matter
is the entire field of statements about any subject. not numbers alone. The
laws of logic are rules designed to ensure that any conclusion drawn from a
statement or set of statements is completely equivalent to the original state-
ment or statements, in whole or in part, and contains no implication not in
the original statements. It is the function of logic to furnish rules which can
be used to justify each step in a chain of reasoning and make certain the final
result is correct.

LOGIC
A famous example of deductive reasoning is the following:

Example 1: All men are mortal.
Socrates is a man.
Therefore, Socrates 1s mortal.

This example is seen to consist of three statements of fact, in the form of
simple declarative sentences. The first two statements arc the premises, and
the last statement, the truth of which follows from the first two. is the con-
clusion. The premises and the conclusion taken together are said to constitute
an argument, or chain of reasoning. This particular form of argument is called
a syllogism. This is not the only possible form of syllogism, nor is a syllogism
the only possible form of argument, but it is a typical example of the whole
process of logical reasoning. Its strength lies in the fact that it is purely
“formal.” Any argument of the form

LOGIC



Example 2: all y’s are z’s;
xisay;
therefore, xis a z

would have to be *“logically ” correct, even if the words used in place of the
X’s, ¥'s, and z's were nonsense. Thus,

Example 3: all smollets are ploigs:
a zipf 1s a smollet;
therefore, a zipt is a ploig

is logically correct, ¢ven though what has been asserted and concluded
remaing something of a mystery!
Consider the following argument:

Example 4: All ripe apples are purple.
All purple things are good to eat.
Therefore. all ripe apples are good to cat.

The first premise is false, the second is not only false but dangerously so,
though the conclusion is generally accepted as true, and certainly follows
logically from the premises. Is this because the two false statements ** cancel
cach other out,” so to speak ? Not necessarily.

For consider the following argument:

Example 5: Philadelphia is in Minnesota.
Minnesota is in the United States.
Therefore, Philadelphia is in the United States.

The first premise is false, the second is true, the conclusion is true, and the
conclusion follows logically from the premises.

What may one conclude from the foregoing examples? If the premises of a
logically correct argument are true. the conclusion will be true, but from the
truth of a conclusion we may not necessarily infer the truth of the premises.

This fact is widely misunderstood and is the basis of much faulty reasoning.
It has very important consequences in mathematics.

EXERCISE 1.1
Use common sense to say what conclusions may be drawn from the following premises:
1. All mammals are warm-blooded.
No fish is warm-blooded.
2. All solid rocks sink in water.
Some pumice-stone floats on water.
3. All equilateral triangles are isosceles.
Some isosceles triangles are right triangles.
4. All X's are »'s.
Some »'s are z’s.

5. All kangaroos are marsupials.
All opossums are marsupials.

1.2
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12.

14.

15.

16.

17.

18.

19.

20.

. Some mammals can fly.

All flying creatures have hollow bones.

. George Washington was born in New York.

New York is in North America.

. No sheep is a carnivore.

All carnivores have teeth.

. I will go out if it is not raining.

It is raining.

. Little children like to play in the mud.

No-one who is not careless of his personal appearance likes to play in the mud.
Criticize the following examples of logical reasoning.

. All horses are quadrupeds.

All quadrupeds are vertebrates.
Therefore, all horses are vertebrates.
All quadrupeds are vertebrates.

All horses are vertebrates.
Therefore, all quadrupeds are horses.

. All bipeds are vertebrates.

No horse is invertebrate.
Therefore, no horse is a biped.

All equilateral triangles have two equals sides.

All isosceles triangles have two equals sides.
Conclusion 1: All equilateral triangles are isosceles.
Conclusion 2: All isosceles triangles are equilateral.

In valid reasoning, a false conclusion never follows from the use of a valid procedure.
If division by zero is permitted, it may be shown that 1 = 2.
Therefore, division by zero is not a valid procedure.

A good athlete trains hard, gets plenty of rest, and eats proper food.
John trains hard, gets plenty of rest, and eats proper food.
Therefore, John is a good athlete.

All intelligent persons go to college.
No stupid person goes to college.
Therefore, everybody in college is intelligent.

All intelligent persons who can afford to go to college.

Robert could not afford to go to college.

Therefore, Robert is intelligent.

Most college athletes spend so much time training that their grades suffer.
William was an all-American tackle, but he barely squeaked through college.
Nobody will ever know whether William was bright or not.

A cannibal who says ‘I could learn to like you” is being ambiguous.

No one should be trusted unless he is unambiguous.

Therefore, a cannibal who says I could learn to like you** should not be trusted.

TERMS AND RELATIONS

The basic unit of logic is the term, which is simply the thing being discussed.

Terms may be concrete—“John Smith” or *“the Statue of Liberty ”—or

EE T

abstract—as ‘‘ goodness,” “ beauty,” ““immortality.”” They may be particular
or general, real or mythological. The symbol for the term may be a word,

LOGIC



such as “grass” or “health,” or a descriptive phrase, such as ““ the boy who
mows the lawn” or “the state of well-being.”” However described or sym-
bolized, the term must be clearly delimited; there must be no doubt as the
subject of discourse.

The term in itself does not assert anything, i.e., it makes no statement
about the subject under discussion. The words which tell about terms are
words which define relationships between terms. Thus,

Example 1: Term Relationship Term
the grass is green;
John loves Mary;
all triangles have three sides.

There are two particular kinds of relationships which are very important
in logic: transitive relationships and symmetrical relationships. If we let R
stand for a relationship which holds between terms, say A and B, then 4 R B
would be a statement proposition which asserts that 4 bears the relation
R to B. Then if, whenever we are told 4 R B and B R C, we may conclude
immediately 4 R C, R is said to be a transitive relationship.

Example 2: If x is greater than y, and y is greater than z, then x is greater
than z. (R = ¢ greater than.”)

If Cleveland is east of Chicago, and New York is east of Cleveland, then
New York is east of Chicago. (R = ““east of.”)

Many important relationships are transitive: ‘ greater than,” *less than,”
“to the left of,” “to the right of,” ““earns more than,” and so forth. On the
other hand, many important relationships are not transitive: If John loves
Mary, and Mary loves William, we may not infer that John loves William.

A relationship is said to be symmetrical if, given 4 R B, we may imme-
diately conclude B R A. “Equals” is probably the most important of the
symmetrical relationships: If @ =b, then b =a. There are many other
symmetrical relationships which we encounter continually: *Near to,”
“unequal to,” and so forth, are symmetrical relationships.

PROPOSITIONS AND PROPOSITIONAL FUNCTIONS

The statement of a relationship between terms is called a proposition, and
the proposition is the starting point for logic. A simple proposition states a
relationship between two terms. Most of the simple propositions which we
will deal with are of the type in which the relationship between terms is
stated by means of a form of the verb “to be.”

Example 1: All men are mortal.
No horses are carniverous.
Some triangles are isosceles.
Some ripe apples are not red.

14



Propositions which are not of this form, such as *“ Dogs chase cats,” may
always be rephrased so that they are in this form. In this example, the re-
statement of this proposition would be ““All (dogs) are (creatures who chase
cats.)” This often results in ungainly and awkward sentences, but the result
actually clarifies the relationship between the terms.

DEFINITION: A proposition is a statement which is either true or false, but not both.

6

Example 2: All whales are mammals. (true)
All apples are red. (false)

Many statements in ordinary language do not fall in this category.

Example 3: “What is it?”
“The White House.”
“Full steam ahead!”

are not statements of fact, but a question, an address, and a command,
respectively.

There are also sentences which look like statements of fact, and have the
form of statements of fact, but are really only apparently so. Thus,

Example 4: “The tree is green;”
*“Christmas comes on Friday;”
‘6 x — 3 2

have the form of simple propositions, but are not truly so. In this first instance,
if by ““the tree ”” we mean a certain maple tree in Cleveland, Ohio, on a certain
day in August, the statement is true, but if we meant the same tree on a
certain day in February, the statement is false. In the second case, if for
“Christmas ™ we put * Christmas, 1964, the statement is true, but if instead
we put “Christmas, 1963, the statement is false. Finally, “x = 3" is true
if for ““ x> we substitute 3, and false if for ““ x 7 we substitute “ 2.” Sentences
such as these, which have the form of propositions, but are neither true nor
false until substitutions have been made in them to particularize them, are
called open sentences, propositional functions, or propositional forms.

EXERCISE 1.2

Determine whether the following sentences are propositions, propositional functions, or
neither. Remember, if a statement is either true or false, it is a proposition: if a statement
can be made into a proposition by specifying a term more closely, it is a propositional
function: otherwise, a statement is neither, but is something like a question, a command, or
an address.

1. Two plus two equals four.
2. x plus 2 equals four.

w

. Does two plus two equal four?
. All even numbers are divisible by two.
. All even numbers are divisible by three.

[ 7 B S

. Algebra makes extensive use of symbols.
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