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To my former, present, and future students

Among all mathematical disciplines the theory of differential
equations is the most important. .. . It furnishes the explanation
of all those elementary manifestations of nature which involve
time.

MARIUS SoPHUS LIE
Lobachevskii Prize, 1897



PREFACE

During the last decade of the 20th century, the teaching of calculus in
North America has seen a split between the classical approach and a
more intuitive one, commonly known as “reform.” Some universities
adopted the new point of view; others chose to stick with tradition.
This split influenced the teaching of the sophomore differential equations
course, which is a natural extension of the freshman calculus curriculum.
The standard path in differential equations is based on exact techniques,
whereas the modern one emphasizes qualitative methods. This textbook
aims to reconcile these two directions and to offer the student a trip along
all the main avenues of the field.

Goals

Our first goal was to strike a balance between these two points of view,
keeping what is good and efficient from the classical approach, eliminat-
ing its nonessential and heavy-going aspects, and developing the qualita-
tive theory as soon as possible. To present the student with a global and
realistic image of the methods used today in differential equations, we
cover all aspects of the theory: exact, qualitative, numerical, and com-
puter techniques, as well as some elements of modeling.

Our second goal was to emphasize the usefulness of mathematics.
Sophomores have reached the stage where their knowledge of algebra,
geometry, and calculus bears fruit. They can apply the acquired tools to
understand certain phenomena in fields ranging from physics, chemistry,
business, and biology, to linguistics, literature, sports, and art. We have
therefore gathered here several achievements of the theory, hoping to
convince the students that mathematical thinking is a key component in
modern society.

Our third goal was to make the textbook attractive and interesting.
This was the most demanding aspect of our work. It involved intense
library research, an effort of imagination, sparks of inventiveness, plus
continuous refining and revision. Any writer knows how difficult it is to
get the words right.

Structure

The textbook contains seven chapters. The first has only an introductory
section in which we present the object of the theory and an overview
of its methods. We also introduce some classification criteria, several
equations and systems important in applications, and a few elements of
modeling.
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Chapter 2 deals with first-order equations. We present the exact
methods for separable equations, discuss the variation of parameters
for linear equations, and assign the homogeneous, exact, Bernoulli, and
Riccati equations as problems. The qualitative methods involve drawing
the slope field and the phase line, understanding the behavior of solu-
tions near equilibria, and deciding about the existence and uniqueness
of solutions for initial value problems. The method of successive ap-
proximations makes the passage from the qualitative to the numerical
approach. We present the Euler and second-order Runge-Kutta methods
as well as some rudiments of error theory. The computer techniques
offer alternative ways of obtaining exact and numerical solutions and
of drawing slope fields. At the end we invite the students to use their
knowledge and imagination in doing some library research to come up
with original ideas in modeling certain problems.

Chapter 3 presents the fundamental theory of linear second-order
equations. We introduce the method of reduction, an algorithm for
solving linear homogeneous equations with constant coefficients, the
variation of parameters, and the method of undetermined coefficients.
The qualitative approach reduces to the study of the phase plane for
autonomous equations. We use the characteristic equation to establish
the nature of the flow near an equilibrium and provide some elements
of structural stability and bifurcation theory. The numerical methods
generalize the ones presented in the previous chapter. The computer
techniques give some new options for obtaining exact and numerical
solutions and for drawing vector and direction fields. We end up with
some modeling experiments.

Chapter 4 extends the results of Chapter 3 to linear systems. We in-
troduce some elements of linear algebra, using a formalism that avoids
operations with matrices. We present most results in terms of two- and
three-dimensional systems, an approach that allows obvious generaliza-
tion to n dimensions. The computer methods extend the ones of the pre-
vious chapter and also include programs for drawing the flow. These
computer techniques can also be applied to nonlinear systems. We close
the chapter with a few modeling experiments.

Chapter 5 deals with qualitative methods for nonlinear systems. We
start with the linearization method and the study of the flow near equilib-
ria based on the Hartman-Grobman theorem. We then investigate simple
periodic orbits and cycles for two-dimensional systems in terms of po-
lar coordinates, and we describe the connection between gradient and
Hamiltonian systems and their reciprocal flows. We also introduce the
notion of Liapunov stability, showing how the Liapunov function method
can succeed when linearization fails. The chapter ends with a description
of chaos in the language of symbolic dynamics and with some modeling
experiments.

Chapter 6 covers differential equations and systems with the help of
the Laplace transform. We first introduce the Laplace transform and its
inverse and give an existence criterion. We then compute the Laplace
transform of elementary and step functions and present a three-step
method for solving differential equations and systems. The computer
techniques can either apply this method directly or help with carrying it
out step by step. We end the chapter with a few modeling experiments.
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Chapter 7 considers exact and approximate power series solutions
for differential equations. We first introduce a method that provides so-
lutions near regular points and then use the Frobenius theorem to obtain
solutions near regular singular points. The computer techniques imple-
ment these methods step by step. We end the chapter with some model-
ing experiments.

Applications

An important selection was the applications. To stress the importance of
the theory of differential equations and to make the presentation attrac-
tive and interesting, we chose examples from various fields of human
activity: anthropology, astronomy, population biology, brewing, busi-
ness, chemistry, cooking, cosmology, rock climbing, ecology, economics,
electronics, engineering, epidemiology, finance, mechanics, medicine,
meteorology, oceanography, pharmaceuticals, physics, politics, space
science, and sports. Some models are well established. Others are mere
didactic toys.

We use differential equations to understand the motion of celestial
bodies (pp. 6-9), model prices in a free-market economy (pp. 9-11, 196-
197), compute the interest of investments (pp. 27-28), date the Shroud
of Turin (pp. 28-29), cook a salmon (pp. 29-30), make a pharmaceutical
drug (pp. 36-38), estimate the growth of the cougar population on Van-
couver Island (pp. 46-47), follow the landing of Apollo 11 {pp. 47-48),
study the swings of Galileo's pendulum (pp. 97-98, 256-258), and partic-
ipate in some maglev transportation experiments (pp. 107-109). We also
analyze the oscillations of water in a pipe (pp. 99-100), understand sim-
ple electric circuits (pp. 131-132), shed some light on the Tacoma Nar-
rows Bridge disaster (pp. 116-119), determine the motion of a bungee
jumper (pp. 137-139), and study the vibrations of a cantilever beam (pp.
139-141). We follow some chemical reactions in the search for an AIDS
vaccine (pp. 183-184), determine the mixtures in a brewing technique
(pp. 184-186), find the optimal shape of a rock-climbing tool (pp. 188-
189), describe the evolution of two fish populations in the Tasmanian
Sea (pp. 195-196), study epidemics with quarantine (pp. 203-204), and
test the strength of buffer springs between the cars of trains (pp. 204~
206). We further draw conclusions about the change of wolf and fox
populations in northern Canada (pp. 232-233), explain the temperature
variation of an engine and its coolant (pp. 239-240), see how lobsters
scavenge (pp. 248-249), investigate why long-term weather forecasts are
unreliable (pp. 260-261), determine the elasticity of a pole-vaulting pole
(pp. 317-319), and study the escalation of expenditures in an arms race
(pp. 319-320). Though far from displaying the entire spectrum of this
theory, we can at least glimpse the variety of phenomena it describes.

Computers

A difficult choice was that of the computer environments. In a field like
computer science, in which textbooks become obsolete soon after publica-
tion, opinions are changing fast, so it is impossible to satisfy everybody. In
the end we decided to go for the three M 's: Maple, Mathematica, and MAT-
LAB, which are popular in colleges and universities, have better chances
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of survival, and whose designers promote constructive upgrading. In Sec-
tions 2.7, 3.7, 4.6, 6.4, and 7.4 we present Maple, Mathematica, and MAT-
LAB separately. This allows instructors a lot of freedom. They can teach
one or all of them, treat them as independent entities or use them inter-
actively while covering the other sections, or assign them as homework
in connection with a computer project or modeling experiment.

Modeling

This is a difficult and time-consuming issue, which if stressed is done
so at the expense of the core material on differential equations. Though
we briefly discuss the modeling problem in most of our applications, we
decided to emphasize this aspect at the end of every chapter and give
instructors the option of assigning lab experiments to the students. Each
modeling exercise has as a final goal the writing of an essay, which may
contribute to the final grade. In Section 2.8 we deal with money invest-
ments, a model of the memory, the landing of Apollo 11, and a popu-
lation dynamics experiment. Section 3.8 considers Galileo’s pendulum,
a model for bungee jumping, suspension bridges, and a simple electric
circuit. In Section 4.7 we propose free-market models, a system describ-
ing malignant tumors and metastasis, another epidemic with quarantine,
and a model for a decelerating train. Section 5.6 refers to chaotic aspects
of the van der Pol, Diiffing, and Lorenz equations, and to the three-body
problem of celestial mechanics. In Section 6.5 we model car suspensions,
electric circuits with ramped forcing, and instant shocks on harmonic os-
cillators. Finally, Section 7.5 deals with pole vault and arms race models
and electric circuits with variable resistance and capacitance.

Historical Remarks

We mention names, dates, and nationalities for the mathematicians
whose results we present, sometimes adding brief historical remarks.
Some books use separate notes for this purpose. We chose to include the
historical facts in the text in order to convey the feeling that mathematics
is a cultural edifice built through collective human efforts.

Style

We tried to be direct and concise. Bombarded with information, students
have no time and no desire to read more than they need. So we attempted
to follow a geodesic toward our goal, keeping theory to a minimum. But
we were generous with metaphors, figures, and examples, which give
the text a friendly look, allowing a better and faster understanding. In
most cases we took the route metaphor-theory-example, but sometimes
we favored a more heuristic approach. We also aimed to strike a balance
between rigor and intuition, relying on the latter whenever the former
endangered clarity.

Teaching

As mentioned earlier, the text presents several methods—analytic, nu-
merical, qualitative, and computer-based—emphasizing that each has its
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merits, depending on the circumstances. All these aspects can be cov-
ered in one term. But unless instructors have at their disposal 16 or
17 weeks, they will be unable to teach all the material. In the fall of
1998 and the spring of 1999, we covered Chapters 1 through 6 during
the usual 13-week term at the University of Victoria, leaving aside the
computer techniques, for which we used only 1 hour of demonstrations.
Alternatively, in the summer of 1999, Cristina Stoica replaced Chapter 6
with Chapter 7. But there are many other choices an instructor can
make with regard to chapters and even sections. For a more classical
approach, Chapters 1, 2, 3, 4, 6, and 7 would be adequate. The com-
puter sections can be intensively used or totally ignored. Somebody
uninterested in numerical methods can simply avoid them. The only
rule to follow is represented in the diagram below, which explains
the logical construction of the textbook. Chapter 5, for example, can
be taught only after going through Chapters 1, 2, 3, and 4. However,
instructors have a lot of flexibility in what they can choose to teach
and skip.

6
)
1-2->3—->4-5

!
7
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Introduction

Mathematics has, in modern times, brought {the idea of] order into
greater and greater prominence.

BerTRAND RUSSELL
Nobel Prize for Literature, 1950

On November 7, 1940, some astounding pictures made the headlines of
the North American television channels. They showed a man struggling
to reach a car abandoned on a bridge that was wildly waving in the
storm. After several unsuccessful attempts he gave up and, with visible
efforts, returned to the shore. This proved a wise decision. The Tacoma
Narrows Bridge near Seattle, a suspension structure more than a mile
long, collapsed minutes later, witnessed by the helpless eyes of those
who had dared to approach it. How could a construction of iron and
concrete wave for days like a flag in the wind and then break all of a
sudden? The answer is difficult (see Section 3.4), but some insight can be
given through the theory of differential equations.

The history of science enumerates many achievements of this theory.
The first is due to the English mathematician and physicist Isaac Newton
(1642-1727), who in addition to being its cocreator, used it to show that
the force that keeps the moon on its orbit is the same as the one that
makes objects fall to the ground.

Shortly after this resounding success, the astronomer Edmond Halley
(1656-1742), a friend of Newton, noticed the similarity of four cometary
orbits observed in 1456, 1531, 1607, and 1682 and wondered whether
they represent the same periodic trajectory. Using Newton's theory,
Halley computed that the comet would return in 1758. He did not
live to see the event, but his prediction proved accurate, and Halley's
Comet has appeared in earth’s skies on schedule three times more since
then.

The discovery of the planet Neptune through numerical computa-
tions, performed independently by the French astronomer Jean Joseph
Le Verrier (1811-1877) and the English astronomer John Couch Adams
(1819-1892), was another significant success for the theory of differen-
tial equations. The observed orbit of Uranus had disagreed with the one
predicted by theory. The two scientists argued that the discrepancy was
due to the existence of some unknown planet. Using numerical meth-
ods, they computed the orbit of this hypothetical object, which was then
observed on September 18, 1846.

First applied to the physical sciences, the theory of differential
equations has later extended to other human activities ranging from

1



The Object of Study

1 INTRODUCTION

engineering and biology to medicine, business, history, sports, and arts.
The goal of this textbook is to introduce you to the main methods, ideas,
techniques, and applications of thisbranch of mathematics, whose strength
lies in its large applicability.

A differential equation relates an unknown function and one or more of
its derivatives. For example, the equation

x'=x (1)

relates the function x = x(¢) and its derivative x’ = dx(¢t)/dt. Unlike the
unknowns of algebraic equations, which are numbers, the unknowns
of differential equations are functions. Solving a differential equation
means finding all its solutions, i.e., all functions that satisfy the equation.
For example, x{(t) = €' is a solution of equation (1) because (e!)’ = e'.
Can you find another solution?

The theory of differential equations has three main branches, which
involve exact, numerical, and qualitative methods. Let us briefly describe
them.

The exact methods are those meant to obtain all the solutions of a given
equation. They first appeared more than three centuries ago at the same
time as calculus. Though fundamental for understanding and developing
further concepts, the exact methods have a narrow range of applications,
because only a few classes of equations can be completely solved.

The numerical methods are designed to obtain, with some reasonable
accuracy, particular solutions of a given equation. They have thrived
during recent decades due to the invention of modern computers. To-
day these methods are widely used in practical problems ranging from
physics and engineering to psychology and art, but, for reasons we will
understand later, they offer good approximations only locally, i.e., on
small intervals of the solution's domain. Therefore, in practical time-
dependent problems, long-term predictions are difficult to achieve with
this approach.

The qualitative methods are used to investigate properties of solu-
tions without necessarily finding those solutions. For example, questions
regarding existence and uniqueness, stability, or chaotic or asymptotic
behavior can be answered with the help of these methods. Except for
existence and uniqueness theorems, which appeared early in the devel-
opment of the theory, the mainstream qualitative methods began to be
developed toward the end of the 19th century, mainly through the work
of the French mathematician Henri Poincaré. These methods are suc-
cessful in understanding fundamental issues of the theory of differential
equations.

We could add to this classification the process of modeling, which
deals with obtaining the equations that describe certain phenomena and
with interpreting the results of their analysis within the framework of
the model. However, this is a much larger subject that goes beyond
the theory of differential equations. We will present two examples of
modeling later in this section and deal with this aspect in many of our
applications.



CHAPTER 1

Classification

Domain of the unknown

Numboer of the unknowns

The study of differential equations is a difficult task. Only a combi-
nation of quantitative, numerical, and qualitative methods brings insight
toward understanding most problems. Mastering this theory at the re-
search level requires knowledge in several branches of mathematics as
well as a taste for applications. At the introductory level it asks for a
salid background in mathematics, which includes the basic notions and
techniques of calculus, algebra, and geometry.

There are several ways of classifying differential equations, of which we
will consider here four criteria.

The main distinction is between ordinary differential equations (ODEs) and
partial differential equations (PDEs). ODEs involve functions of one vari-
able and their derivatives, whereas PDEs concern functions of several
variables and their partial derivatives.

EXAN“’LE] The equations

x' = 2x2, 2)
u = 2u — 13 (3)
vi—2h'+v—6=0 4)

- are ODEs. For simplicity, the argument t of the functions x, u, and v is

" omitted. The equation

% = z(%“;)z - 3xy(%)3, (5)

- where the unknown function is u(t, x, y), is a PDE. In this textbook we

will deal only with ODEs.

We distinguish between single differential equations and systems of differ-
ential equations.

" EXAMPLE 2 All previous ODE examples have been single equations.
. The following ones are systems:

x'= -y
{V' = X, ©

x; = xZ +5x$ — x3

le = :zl-txl -3 (7)

X1X2X3 SIn t.

&
I

The first system is two-dimensional and the second is three-dimensional.



Structure of the equation

Order of the equation

Applications

1 INTRODUCTION

We distinguish between linear differential equations and nonlinear differ-
ential equations. Linear equations are those whose left- and right-hand
sides are linear functions (i.e., polynomials of degree 1) with respect to
the unknown and its derivatives, whereas nonlinear ones do not sat-
isfy this property. Linear systems are those formed by linear equations
only, whereas nonlinear ones are those involving at least one nonlinear
equation.

P = ¢’p (8)
u" = (sin@u’ + (cos O)u 9

are linear in spite of having nonlinear coefficients (in t and 6, respec-
tively). The equations

x' = 3x% 4+t (10)
y'= -yt (1)

are nonlinear. Also, system (6) in Example 2 is linear, whereas (7) is
nonlinear.

We say that an equation has order k if the highest derivative involved in
the equation has order k.

“EXAMPLE 4 The equations

w' = —4w + 3, (12)
2X' —8X" = X + 74, (13)
Ex" = 6x' 4+ x" — 2& (14)

have order 1, 2, and 3, respectively. Systems (6) and (7) in Example 2
both have order 1.

The examples above have been chosen artificially, in the sense that they
do not necessarily describe natural phenomena. But since the theory of
differential equations is mainly concerned with those equations that have
applications in other fields of human activity, we will present some exam-
ples from physics, astronomy, meteorology, chemistry, biology, anthro-
pology, medicine, economics, and engineering. The area of applications
is much larger than what we show here.

Some of the equations below are easy to solve, and we will solve
them later; others continue to defy our attempts at obtaining explicit
solutions. Progress in understanding them has been slow so far. Such
differential equations can take the life-work of several generations of
mathematicians and still remain poorly understood.
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(i)

(Gii)

iv)

)

The equation
x'=k-x (15)

models growth or decay problems. It says that, at a certain
time, the rate at which a given quantity is changing is
proportional to the amount existing at that time. This equation
is used, for example, to determine the half-life of a radioactive
substance or the doubling time of a money investment with
continuously compounding interest. The well-known carbon
dating method used in anthropology is based on this simple
equation, In this case x represents the quantity of radioactive
substance and % is a constant characteristic of the substance.
The value of the constant can be determined through practical
experiments and measurements. We will study this equation
in detail in Section 2.2,

Newton's law of cooling or heating differs slightly from (15),

T' = k(T — 1) (16)

where k and 7 are constants. It models the cooling or heating
of a body immersed in a medium of constant temperature ,
where T is the unknown temperature function of the body,
and k is a constant depending on the body. This equation
describes a known physical phenomenon: that the rate at
which the temperature of a body is changing is proportional
to the difference between the temperatures of the medium
and the body. We will study this equation in detail in
Section 2.2.

The equation

u' = k(a ~u)Xb —u), 17)

where k, a, and b are constants, models mixing problems in
chemistry.
The logistic equation

p' = Ap(a — p) (18)

is a special case of equation (17), where a and A are constants:
it is used in biology and medicine for simple population and
epidemiological models. We will study this equation in Section
2.4 in connection with a model that describes the evolution of
the cougar population on Vancouver Island.

The equation

x" 4+ bx' + kx = ysin ot (19)

where b, k, ¥, and w are constants, models a simple electric
circuit or the motion of a damped spring with a periodic
forcing term. It is connected to many practical problems,
which range from bungee jumping to the collapse of the
Tacoma Narrows Bridge. We will consider this equation in
Section 3.4.



