-1 G:H+«LE ¥

LANGUAGE

COMPUTER
ARCHITECTURE

VELJKO M. MILUTINOVIC




HIGH-LEVEL LANGUAGE
COMPUTER ARCHITECTURE

Edited by
Veljko M. Milutinovié¢

with a Foreword by

Michael Flynn

COMPUTER SCIENCE PRESS



Library of Congress Cataloging-in-Publication Data

High-level language computer architecture.
(Advances in VLSI series: 1)
Bibliography: p.
Includes index.
1. Computer architecture. 2. Programming languages
(Electronic computers) 1. Milutinovié, Veljko.
II. Series.
QA76.9.A73T66 1988 004.2'2 87-38193
ISBN 0-88175-132-4

Copyright © 1989 by Computer Science Press, Inc.

All rights reserved. No part of this book may be reproduced in any form
including photostat, microfilm, and xerography, and not in information
storage and retrieval systems, without permission in writing from the
publisher, except by a reviewer who may quote brief passages in a
review or as provided in the Copyright Act of 1976.

Printed in the United States of America

1234567890 RRD 6543210898



HIGH-LEVEL LANGUAGE
COMPUTER ARCHITECTURE



Advances in VLSI Series
Wushow Chou, Series Editor

1. High-Level Language Computer Architecture
Veljko M. Milutinovi¢, Editor



PREFACE

High-Level Language Computer Architecture is intended for computer sys-
tem architects and designers, as well as for computer managers or users,
who need a deep, broad, and up-to-date knowledge of HLL computer
architecture. It can be used for graduate university courses and as a
research and development reference in the industrial environment.

The book’s organization grew out of the following classification of
high-level language computer architectures:

Control-Driven Approach
Reduced Instruction Set
Complex Instruction Set
Language-Directed
Language-Corresponding
Translation in Software (type A)
Translation in Hardware (type B)
Dataflow
Reduction

This is a combination of the classifications of Treleaven (control-driven,
dataflow, and reduction), Patterson (reduced and complex), and Myers
(language-directed and language-corresponding types A and B). Note that
various classes in the above classification are correlated. For example,
sometimes it is difficult to distinguish between language-directed and lan-
guage-corresponding approaches. Also, dataflow and reduction approaches
often work best when combined. Finally, all existing classes can be further
subdivided. However, I feel most comfortable with the above classification;

vii



viii Preface

where appropriate, references are made to other related classes or possible
subclasses within the classification. Consequently, the topics covered in this
book, in the order of increased hardware complexity, are as follows:

Reduced Instruction Set Computer Architecture (Chapters 1-3)
Language-Directed Computer Architecture (Chapters 4-6)
Language-Corresponding Computer Architecture (Chapters 7 and 8)
Dataflow Architecture (Chapters 9 and 10)

Reduction Architecture (Chapters 11 and 12)

Each topic is represented by at least two chapters: one on the general
overview and related theory and practice, the other on a selected case study.
The overview chapter includes a number of small pedagogical examples.
The case study chapter includes the details of the design and /or implemen-
tation for a particular project. For reduced and complex language-directed
architectures, an additional application-oriented chapter has been included
to reflect the increased popularity of the two topics.

In some cases, the same problem is treated in several chapters; this is
because the topics are correlated, as indicated earlier. It is often useful to
read about the same problem from different perspectives.

Each contributing author has been encouraged to express individual
opinions and approaches. Therefore, some controversial issues are discussed
in different chapters from different points of view, and sometimes with
different conclusions. This presentation points clearly to the fact that the
field is rapidly expanding and that final solutions to many problems have
not yet been found.

Finally treating RISC architecture as a class of high-level language
architecture is sometimes controversial. I believe that the primary classifica-
tion criteria should include the efficiency of the compiled high-level lan-
guage code, among other issues; the number of machine-level instructions
that corresponds to a “typical” high-level language statement should be of
secondary importance.

Veljko M. Milutinovi¢, Editor
Purdue University



X Foreword

2. Making a large number of registers available to the instruction set
reduces the number of data state transitions required of memory, but
large register sets may increase processor cycle time as well as the
number of cycles when a context switch is required.

The overall objective of modern processor design is to improve program
execution: to reduce the number of cycles required to execute a program
and to reduce the time it takes to execute each cycle. Considering the
previously mentioned tradeoffs, we see the nature of the processor architec-
ture design space. Minimizing the number of cycles (state transitions) may
be accomplished by a rich vocabulary of operations together with large
register sets, yet this may be disadvantageous to cycle time itself and hence
to overall program execution time. Moreover, there is an issue of predict-
ability: minimizing the number or location of possible alternative actions
within an instruction or sequence of instructions. Highly predictable code
improves the possibility for efficient pipelining of instructions. If much of
instruction execution can be overlapped among individual instructions, then
rapid program execution can be assured. While it is difficult to make broad
generalizations, the support of improved cycle time and pipelining is seen in
many of the RISC (reduced instruction set computer) approaches, while
attempts to provide better encoding of instruction sets and hence smaller
program size and fewer instructions to execute a program are seen in more
complex instruction set (CISC) computers. These are two competing ap-
proaches for improving processor architectures.

Beyond all this is the issue of language itself. Processors execute pro-
grams that are translated from a high-level language, thus, the information
available to the processor can be no more than the information available in
the high-level language form of the program. The processor deals merely
with a surrogate for the high-level language source program. If the original
semantics of program expression are not sensitive to issues of concurrency
—if they do not promote the specification of independent actions—then it
is difficult for the processor to identify actions that may be executably
independent. In an ensemble of processors, execution would still be limited
by the sequentiality (lack of concurrency) implied by the semantics of the
source program. Concurrent execution of a single source program may be
limited by many things, but especially by

1. Precedence—the need for an action to be completed before a succes-
sor action can be applied to its result.
2. Global traffic—modifications to memory updating data structures

which are visible to the ensemble of processors.

There has been much recent effort in the development of programming
languages and processor ensembles to eliminate unneeded or implied prece-



Foreword xi

dence and global traffic from programs. Dataflow languages and reduction
languages, as well as the machines which support these, are examples of this
effort.

The common thread through all of this is the sensitivity of initial
program representation (the language), the support of the attributes of
language in architecture (instruction set and storage), and the creation of
efficient processor designs.

Among the authors of this book are leading contributors to the respective
architectural topics. Their work should shed light on issues of efficiency in
language and correspondence between architecture and language, processor
and architecture, and be a welcome addition to the literature in the field.

Michael Flynn
Stanford University



CONTENTS

PREFACE vil

FOREWORD ix
1 RISC PRINCIPLES, ARCHITECTURE, AND

DESIGN 1

Charles E. Gimarc and Veljko M. Milutinovi¢

2 ARCHITECTURE AND DESIGN OF A 32-BIT GaAs
MICROPROCESSOR 65
Walter A. Helbig and Veljko M. Milutinovi¢

3 HLL ARCHITECTURE FROM A RISC
PERSPECTIVE 107
Peter Steenkiste and Thomas Gross

4 LANGUAGE-DIRECTED COMPLEX
INSTRUCTION SET COMPUTER
ARCHITECTURES 131
Borivoje Furht

5 THE NATIONAL SEMICONDUCTOR
SERIES 32000 229
Colin Hunter

6 A MOTOROLA MC68020-BASED 1/0
CONTROLLER 266
David G. Meyer and Mahibur Rahman

7 DIRECT CORRESPONDENCE ARCHITECTURES:

PRINCIPLES, ARCHITECTURE, AND DESIGN 305
Robert G. Wedig
8 THE DELtran PROJECT 332

James Hoch and Carla Bauer



vi

10

11

12

Contents

DATAFLOW MACHINES 356
Jean-Luc Gaudiot

AGM: THE IRVINE DATAFLOW DATABASE MACHINE 387
Lubomir Bic

REDUCTION MACHINES 413
Milds D. Ercegovac and Dorab Patel
THE FFP MACHINE 430

Gyula Mag6 and Donald F. Stanat
INDEX 469



Chapter 1

RISC PRINCIPLES, ARCHITECTURE,
AND DESIGN

Charles E. Gimarc and Veljko M. Milutinovic¢

1.1 INTRODUCTION

One of the fundamental goals of computer design is to maximize system
performance. Computer performance may be thought of as the rate at
which a computer can produce the desired results, given a detailed task
specification, and the appropriate data. From the first stored program
machines, performance increases were often realized through increased
system complexity. As will be seen in this chapter, the reduced instruction
set computer (RISC) approach attacks the same performance problems,
using a conceptually different methodology.

1.1.1 Background Information and Initial Premises

In many computer applications, programs written in assembly language
exhibit the shortest execution times. Assembly language programmers often
know the computer architecture more intimately, and can write more
efficient programs than compilers can generate from high level language
(HLL) code. The disadvantage to this method of increasing program
performance is the diverging cost of computer hardware and software. On
one hand, it is now possible to construct an entire computer on a single
chip of semiconductor material, its cost being very small compared to the
cost of a programmer’s time. On the other hand, assembly language
programming is perhaps the most time-consuming method of writing soft-
ware. ‘

One way to decrease software costs is to provide assembly language
instructions that perform complex tasks similar to those existing in HLLs.
These tasks, such as the character select instruction, can be executed in one

1



2 RISC Principles, Architecture, and Design

powerful assembly language instruction. A result of this philosophy is that
computer instruction sets become relatively large, with many complex,
special purpose, and often slow instructions. Another way to decrease
software costs is to program in a HLL, and then let a compiler translate the
program into assembly language. This method does not always produce the
most efficient code. It has been found that it is extremely difficult to write
an efficient optimizing compiler for a computer that has a very large
instruction set.

How can the HLL program execute more quickly? One approach is to
narrow the semantic distance between HLL concepts and the underlying
architectural concepts [Meyers81]. This closing of the semantic gap sup-
ports lower software costs, since the computer more closely matches the
HLL, and is therefore easier to program in an HLL. Various aspects of this
issue are discussed elsewhere in the book, and will not be further elaborated
here.

As instruction sets became more complex, significant increases in perfor-
mance and programming efficiency occurred. However, some designers
began to question whether computers with complex instruction sets (com-
monly referred to as CISCs, or complex instruction set computers) are as
fast as they could be, having in mind the capabilities of the underlying
technology. A few designers hypothesized that increased performance should
be possible through a streamlined design, and instruction set simplicity.
Thus, research efforts began in order to investigate how processing perfor-
mance could be increased through simplified architectures. This is the root
of the reduced instruction set computer (RISC) design philosophy.

Seymour Cray has been credited with some of the very early RISC
concepts [Mashey86], [MIPS86b]. In an effort to design a very high speed
vector processor (CDC 6600), a simple instruction set with pipelined
execution was chosen. The CDC 6600 computer was register based, and all
operations used data from registers local to the arithmetic units. Cray
realized that all operations must be simplified for maximal performance.
One complication or bottleneck in processing may cause all other oper-
ations to have degraded performance.

Starting in the mid 1970s, the IBM 801 research team investigated the
effect of a small instruction set and optimizing compiler design on com-
puter performance. They performed dynamic studies of the frequency of
use of different instructions in actual application programs. In these studies,
they found that approximately 20 percent of the available instructions were
used 80 percent of the time. Also, complexity of the control unit necessary
to support rarely used instructions, slows the execution of all instructions.
Thus, through careful study of program characteristics, one can specify a
smaller instruction set consisting only of instructions which are used most
of the time, and execute quickly.

The first major university RISC research project was at the University of
California, Berkeley (UCB). David Patterson, Carlos Séquin, and a group of



Introduction 3

graduate students investigated the effective use of VLSI in microprocessor
design. To fit a powerful processor on a single chip of silicon, they looked
at ways to simplify the processor design. Much of the circuitry of a modern
computer CPU is dedicated to the decoding of instructions and to control-
ling their execution. Microprogrammed CISC computers typically dedicate
over half of their circuitry to the control section. However, UCB researchers
realized that a small instruction set requires a smaller area for control
circuitry, and the area saved could be used by other CPU functions to boost
performance. Extensive studies of application programs were performed to
determine what kind of instructions are typically used, how often they
execute, and what kind of CPU resources are needed to support them.
These studies indicated that a large register set enhanced performance, and
pointed to specific instruction classes that should be optimized for better
performance. The UCB research effort produced two RISC designs that are
very widely referenced in the literature. The two processors developed at
UCB will be referred to as UCB-RISC I and UCB-RISC II, and are
discussed in detail in Section 1.3. The mnemonics RISC and CISC emerged
at this time.

Shortly after the UCB group began its work, researchers at Stanford
University (SU), under the direction of John Hennessy, began looking into
the relationship between computers and compilers. Their research evolved
into the design and implementation of optimizing compilers, and single-cycle
instruction sets. Since this research pointed to the need for single-cycle
instruction sets, issues related to complex, deep pipelines were also investi-
gated. This research resulted in a RISC processor for VLSI that will be
referred to here as the SU-MIPS, and is discussed in detail in Section 1.3.3.

The result of these initial investigations was the establishment of a design
philosophy for a new type of von Neumann architecture computer. Re-
duced instruction set computer design resulted in computers that execute
instructions faster than other computers built of the same technology. It
was seen that a study of the target application programs is vital in designing
the instruction set and datapath. Also, it was made evident that all facets of
a computer design must be considered together.

1.1.2 Essence of the RISC Design Philosophy

The design of reduced instruction set computers does not rely upon
inclusion of a set of required features, but rather, is guided by a design
philosophy. Since there is no strict definition of what constitutes a RISC
design, a significant amount of controversy exists in categorizing a com-
puter as RISC or CISC. This controversy is discussed in section 1.2.3.

The RISC philosophy can be stated as follows: The effective speed of a
computer can be maximized by migrating all but the most frequently used
functions into software, thereby simplifying the hardware, and allowing it to be
faster. Therefore, included in hardware are only those performance featuires



4 RISC Principles, Architecture, and Design

that are pointed to by dynamic studies of HLL programs. The same philosophy
applies to the instruction set design, as well as to the design of all other on-chip
resources. Thus, a resource is incorporated in the architecture only if its
incorporation is justified by its frequency of use, as seen from the language
studies, and if its incorporation does not slow down other resources that are
used more frequently.

Common features of this design philosophy can be observed in several
examples of RISC designs. The instruction set is based upon a load /store
approach. Only load and store instructions access memory. No arithmetic,
logic, or 1/0 instruction operates directly on memory contents. This is the
key to single-cycle execution of instructions. Operations on register con-
tents are always faster than operations on memory contents* (memory
references usually take multiple cycles). Simple instructions and simple
addressing modes are used. This simplification results in an instruction
decoder that is small, fast, and relatively easy to design. It is easier to
develop an optimizing compiler for a small, simple instruction set than for a
complex instruction set. With few addressing modes, it is easier to map
instructions onto a pipeline, since the pipeline can be designed to avoid a
number of computation related conflicts. Little or no microcode is found in
many RISC designs. The absence of microcode implies that there is no
complex micro-CPU within the instruction decode/control section of a
CPU. Pipelining is used in all RISC designs to provide simultaneous
execution of multiple instructions. The depth of the pipeline (number of
stages) depends upon how execution tasks are subdivided, and the time
required for each stage to perform its operation. A carefully designed
memory hierarchy is required for increased processing speed. This hierarchy
permits fetching of instructions and operands at a rate that is high enough
to prevent pipeline stalls. A typical hierarchy includes high-speed registers,
cache, and/or buffers located on the CPU chip, and complex memory
management schemes to support off-chip cache and memory devices. Most
RISC designs include an optimizing compiler as an integral part of the
computer architecture. The compiler provides an interface between the
HLL and the machine language. Optimizing compilers provide a mecha-
nism to prevent or reduce the number of pipeline faults by reorganizing
code. The reorganization part of many compilers moves code around to
eliminate redundant or useless statements, and to present instructions to the
pipeline in the most efficient order. All instructions typically execute in the
minimum possible number of CPU cycles. In some RISC designs, only
load /store instructions require more than one cycle in which to execute. If
all instructions take the same amount of time, the pipeline can be designed

*However, references to cached or buffered operands may be as rapid as register references, if
the desired operand is in the cache, and the cache is on the CPU chip.



Introduction 5

to recover from faults more easily, and it is easier for the compiler to
reorganize and optimize the instruction sequence.

1.1.3 A Comparison of RISCs and CISCs

Design of a computer based upon RISC philosophy is not always the best
solution to all computer architecture problems. RISC designs have some
inherent advantages and disadvantages when compared to CISC designs.

With RISC designs, it is possible to increase performance (i.e., the speed
at which instructions can be executed) through careful design of the
datapath, pipeline, and other CPU resources. This possible increase is
primarily a result of the simplified instruction set and physically smaller
controller area. Optimizing compilers that are capable of organizing the
assembly instruction stream in the most efficient order, are easier to develop
when the target instruction set is small and simple. RISCs have an archi-
tectural advantage over CISCs in requiring fewer clock cycles per instruc-
tion. This is due to the relative simplicity of the control section. Thus, for a
given technology or clock speed, a RISC will always execute an instruction
stream faster.

Because of the design philosophy, some aspects of RISCs may be seen as
a disadvantage. Most RISC instruction sets are designed after a statistical
study of target application programs. As a result, RISCs may be more
narrowly defined than CISCs, and not as useful in the most general-purpose
computing environments. This can also be seen as an advantage since it is
possible to define a RISC that is targeted for a carefully defined application
class, and therefore is more efficient than a general-purpose CISC. Optimiz-
ing compilers for RISCs usually require more time to execute than the
nonoptimizing compilers commonly used with CISCs. This is due to the
additional compile-time tasks of pipeline management, branch prediction,
and code reorganization. Since RISCs generally have fewer instructions
than CISCs, each one must be more primitive, requiring more of them to
perform a single HLL task. Thus, for a given HLL program, RISCs usually
require more assembly instructions than CISCs. This small memory penalty
is not seen as important in view of the low cost of semiconductor memory.
Consequently, because of the reduced number of instructions required to
represent a HLL program, CISCs have decreased memory traffic with
respect to instruction fetches. Also, the penalty of increased program length
is compensated by the fact that RISCs can execute most instructions in a
single CPU cycle, while most CISC instructions require several cycles.
Typically, a CPU cycle for a RISC requires less time than a CISC CPU
cycle (assuming implementation in similar technologies).

In the area of software reliability, RISC designs may be at a disad-
vantage. Typically, CISCs use hardware to perform run-time tests on the
validity of instructions, data, and memory accesses. Privileged instructions,
protected memory, and error correction schemes in firmware are used to



6 RISC Principles, Architecture, and Design

improve software reliability. Implementation of many reliability schemes in
RISC designs is contrary to the RISC philosophy. A hardware resource
should not be included in the design unless its frequency of use is relatively
high. Hardware to support software reliability is not used very frequently,
thus should it be included? RISCs tend to depend upon compilers for
software reliability related issues.

1.1.4 Relationship of RISCs and HLL Architectures

The most important issue of the relationship between RISCs and HLL
architectures is how fast the compiled HLL programs execute. It is not
necessary to design an instruction set that is similar to the HLL instruc-
tions. In fact, this is often difficult to do, especially if one wants to make the
assembly language useful for more than one high level language. RISC
philosophy requires that the instruction set provides primitive solutions that
can be combined to perform HLL programming tasks.

Can RISC architecture be treated as a subclass of HLL computer
architectures? We believe: Yes! What is of primary relevance is the execu-
tion speed of compiled HLL code, not the number of machine instructions
corresponding to one HLL statement.

1.1.5 Relationship of RISCs and Implementational Technologies

RISC philosophy can be applied to both VLSI and SSI /MSI designs, but a
computer architecture based upon the RISC philosophy is better suited for
implementation in VLSI. Through a distribution of on-chip resources that
allows a minimization of the datapath cycle time, a VLSI implementation
can have high performance. The reduction of hardware resources allows the
entire CPU to be built on a single, small chip. In contrast, CISC designs are
typically hardware intensive, and single chip implementations imply large,
complex chips.

Most of the RISC designs are implemented in silicon technology. How-
ever, the last three examples in this chapter are based on Gallium Arsenide
(GaAs) technology. GaAs integrated circuit designs place many severe
constraints upon computer architecture, because of the nature of the
technology. Useful chip area limits the size of a circuit that can be built on
a single substrate. Delays for off-chip communications indicate that there
are severe penalties for going off-chip. Thus RISC design, which is inher-
ently more compact than CISC design, is an excellent candidate for GaAs
implementation. In silicon, one can argue for or against RISC philosophy.
In GaAs, there is no dilemma: RISC is the only choice [Milut86].

1.2 DEFINITION OF ESSENTIAL ISSUES

One of the fundamental concerns for a RISC architect is to design the
maximum performance for the desired applications mix, given a finite



