Lecture Notes in Computer Science

74

Mathematical Foundations
of Computer Science 1979

Proceedings. Olomouc, Czechoslovakia

Edited by J. Beévar

‘T{hifij '
MK 8163359

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

74

Mathematical Foundations
of Computer Science 1979

Proceedings, 8th Symposium,
Olomouc, Czechoslovakia, September 3-7, 1979

Y

Edited by J. Beévat

|l

Springer-Verlag |
Berlin Heidelberg New York 1979

Il

E8163359

[

Editorial Board .
P. Brinch Hansen D. Gries C. Moler G. Seegmiiller
J. Stoer N. Wirth

Editor

Jiti Betvar

Mathematical Institute

Czechoslovak Academy of Sciences
Zitna 25

115 67 Prague 1/Czechoslovakia

AMS Subiject Classifications (1970): 02E10, 02E15, 02F10, 02 F8,
68 A05, 68 A20, 68 A25, 68A30, 68 A45, 68A50
CR Subject Classifications (1974):

BBN 3-540-09526-8 Springer-Verlag Berlin Heidelberg New York
88BN 0-387-09526-8 Springer-Verlag New York Heidelberg Bertin

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is coneerned, specifically those of translation, reprinting, re-use of
illustrations, broadcasting, reproduction by photocopying machine or similar means,
and storage in data banks. Under § 54 of the German Copyright Law where copies
are made for other than private use, a fee is payable to the publisher, the amount of
the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1979

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.

2145/3140-543210

MFCS "79

FOREWORD

This volume contains the papers which were selected for presenta-
tion at the symposium on Mathematical Foundations of Computer Scieance
- MFCS“79, held in Olomouc, Czechoslovakia, September 3 - 7, 1979.

The symposium is the eighth in a series of annual international
meetings which take place alternately in Czechoslovakia, and Poland.
It has been organized by the Mathematical Institute of the Czechoslovak
Academy of Sciences, Prague, the Faculty of Mathematics and_Physicé
of Charles University, Prague, and the Faculty of Natural Sciences
of Palacky University, Olomouc, in co-operation with the Federal
Ministry for Technical and Investment Development, the Technical
University, Prague, the Computing Research Centre, Bratislava, the
Faculty of Natural Sciences of Komensky University, Bratislava, and the
Faculty of Natural Sciences of Safdrik University, Ko¥ice.

The articles in these Proceedings include invited papers and short
communi®tions. The latter were selected from among 95 extended
abstracts submitted in response te the call for papers. Selection was
made on the basis of originality and relevance to theoretical computer
science by the following Program Committee: J. Be&vdf /Chairman/,

J. Gruska, P. Hdjek, M. Chytil, J. Krdl, M. Novotny, B. Rovan. A number

of referees helped the Program Committee in the evaluation of the
abstracts.

The papers included in these Proceedings were not foxmakly
xefereed. It is anticipated that mest of them will appear im & poddahed
and eompleted from im seientifidc jouxmals.

. \

N .

et 5
The org&nizers of the symposium are much indebted to all Qhose

who contributed to the program, in particular to the authors of the
papers. Special thanks are due to the referees of the abstracts.
Thanks are also due to'all the above mentioned co-operating institutions
for their valuable assistance and support, and to all the persons who
helped in organizing the symposium. The Organizing Committee consisted
of J. Be&vd¥, J. Gregor,. J. Gruska, P. H4jek, I. Havel, 8. Huddk,
M. Chytil, J. Kr4l, F. Krutsky, B. Miniberger, M. Novotny, A. Rézek,
Z. Renc; B. Rovan, and M. Vlach /Chairman/. The Program Chairman
acknowledges with gratitude the extensive assistance of I.M. Havel,
P. Pudldk, and S. Zdk_ in editing this volume.)

The organizerb of the symposium wish to express their thanks to
the representatives of the Palacky University in Olomouc for their’
support and interest in the symposium.

Finally, the help of the Sprinqer-Verlag in the timely publication
of this volume is highly appreciated.

-7

/
Prague,“May 1979 Ji¥{ Bel&v&¥
\

8163359

CONTENTS

Invited lectures

J.W. de Bakker
A sound and complete proof system for partial
Program COrrectnessgecececccccccscocscccss

J .\4 Barzdin
The problem of reachability and verification of programs 13

A.J. Blikle]
Assertion programming R I T T T T P 26

R.V. Book 6 4
Complexity clasges of formal LANGUAGESB « sus siaw viow wiowwossos v Beive 43

R. Freivalds
Fast probabilistic algorithms ...cscecicscvscssoaidonsbossssosssal 57

J. Hartmanis and T.P. Baker
Relative succinctness of representations of languages
and separation of complexity CLASSE@S ...cevececeereeccnacnsenness 70

I.M. Havel
On two types Of lOOPS .c.cicensccoscrcsssscscstosssssasosncsccscnansse 89

M.C.B. Hennessy and G.D. Plotkin
Full abstraction for a simple parallel programming language ..:.. 108

H.A. Maurer .
On some developments in cryptography and their applications
to compuﬁer SCIeNCe ...ccuvercerecccccscarcnnnsascaccssnncccanness 121

K. Mehlhorn
Searching, sorting and information tveory ceccessecsssesssssssaes 131

R. Milner
LCF: .a way of doing proofs with a machineccecceeeecacacio. 146

1

V.R. Pratt . , ,
Axioms or algorithmscccceceeececcccoccscioscscsnsaccsasnasase 160

-~
i
g

A. Salomaa
POWEr fYOM DOWEI SBELL€S . .cvuceecueennnennnennneossaonnasennsess

A.0. Slisenko . :
Computational éomplexity of string and graph identification

D. Wood
A survey of grammar and L forms = 1978veevvecncnnocnnanns

Communications

A. Adachi,-T, Kasai and E. Moriya _
A theoretical study on the time analysis Of programs .,.........

H. Andréka, I. Németi and I. Sain
Completeness problems in verification of programs
and program schemes e e e s eteces et cececoessecccscasesescecannnnne

J.-M. Autebert _
Relationships between AFDL s and cylinders T rrrmmm>r

G. Comyn and G. Werner
Computable data tYPeS c.i.icteieeereaeeneeecceconenocaccocoonnnnens

G. Cousineau and P. Enjalbert
Program equivalence and Provability «.eeeeeeeeeceecescceeooenoeess

K. Culik II and J. Karhumiki
Interactive L systems with almost interactionless behaviour

R.P.'Daley

On the simplification of constructions in degrees

of unsolvability via computational complexity ceeseccscas
W. Damm

An algebraic extensioﬁ of the Chomsky-hierarchyc.eceeceeaes

M.I. Dekhtjar
Bounds on computational complexity and approximability
of initial segments of recursive Se€tScececeeee.. cecacsces

-T. Fischer
On the weighted path length qf binary search trees
for unknown access probabilities R R I

170

182

191

201

208

219

1228

237

246

258

266

277

284

Vil

G.V. Gens and E.V. Levner
Computational complexity of approximation algorithms
for combinatorial problems ...cccccsecccscsccscsccsscscscsssscscs

A. Goral&fkovd and V. Koubek
A reduct-and-closure algorithm for graphsccceccoceeccccccs

LY GreguSovd and I. Korec
Small universal Minski machines

e e e cececsessecssscseesn o000 0000 s

T. Kamimura and G. Slutzki
Parallel and two-way recognizers of directed acyclic graphs

A. Kanda

Fully effective solufions of recursive domain equations

I. Kramosil

A note on computational complexity of a statistical
deducibility testing procedure ..cesecsssvsonsssssoessossessnsss e

M. Kudlek

Context free normal SyStemsScceccoceccccecsccccsscsscsncccans

M. Linna and M. Penttonen
New proofs for JUmp DPDA S c.eeeeescccvesccsosscsossscsonacconns

A. de Luca and A. Restivo ®

Synchronization and maximality for very pure subsemigroups
Oof a free SemMigroup .c.cccecececeacecosccsccccocscscssscscscocccnscasans

G.B. MarandZjan
On the sets of minimal indices of partial
recursive functions ;

ee s s e s 0000000000000 8c000000000000000000c0000S0

K. Mehlhorn

Some remarks off BOOlean: SUMS .cssvssssivssecsosssssssssosinssenas

G. Mirkowska .
On the propositional algorithmic logic e S Y. P

A. Nijholt and E. Soisalon-Soininen

Ch(k) grammars: a new characterization of LL(k) languages

T. Ottmann and D. Wood
A uniform approach to balanced binary and multiway trees

292

301

308

317

326

337

346

354

363

372

375

381

390

398

Vil

G. P¥un

On the generative capacity of some classes of grammars

with regulated XeWriting tiiieeiceceeeeeecososssnoococensennssnas 408
P. RuZidka

Validity test for Floyd's operator-precedence

Parsing algorithms ...c..ceeeeeeeeeeeeecneococaeocncons ceceensas .. 415

P.H. Starke .
On the 'languages of bounded Petri NEtSceeveceveevensnnnn.. 425

M. Tegze

Dyck language D, is hot absolutely parallelceeeeeecccceca.. 434
2

J. Tiuryn)
Fixed points 'in power-set algebra of infinite trees ceesecseceses 443

B.A. Trakhtenbrot :
On relaxation rules in algorithmic logic B R K I I I P 453

V. Trnkovd
L-fuzzy functorial AutOMATA «.eeewesseeeeoeoeennenneonennnnnnnns 463

G.E. Tseytlin
Schematics of structural parallel programming
and its applicationsceeceeee.. D R g PP ceccesceses 474

M.K. Valiev
On axiomatization of deterministic propositional
dynamic logic St ccccececcsctccet ettt ascacesctnscssesencanasess 482

K. Wagner
Bounded recursion and complexity ClasSSeS «......cececececcacen.. 492

W. Wechler
Characterization of rational and algebraic power series 499

G. Wechsung
A crossing measure for 2-tape Turing machines tececsssscsssssssss 508

J. Wiedermann A
The complexity of lexicograph;c sorting and searching 517

J. Winkowski ‘
An algebraic approach to concurrence ceecccscscssesescccccacasss 523

-

H. Yamasaki
On multitape automataeccccceee S % Eiemalew Siee B B S e s SeNS e SRS

s. %4k
A Turing machine oracle hierarchyccccceceececcccccccccns

Appendix *

G. Berry and J.-J. Léevy
A survey of some syntactic results in the)-calculus ...ccoc000

G. Cousineau and M. Nivat
On rational expressions represenfing infinite rational trees:
Application to the structure Of flow ChartsS .cccevesecececsccsocas

* Manuscript received too late to be placed correctly in the
alphabetic listing.

533

542

552

567

A SOUND AND COMPLETE PROOF SYSTEM FOR
PARTIAL PROGRAM CORRECTNESS

J.W. de Bakker
Mathematical Centre
2° Boerhaavestraat 49, Amsterdam

1. Introduction

We investigate soundness and completeness of a proof system dealing with partial
correctness of programs in a language with.assignment, composition, conditionals,
block structure, subscripted variables and (possibly recursive) procedure;ﬁi&fh the
parameter mechanisms of call-by-value and call-by-address (call-by-vaii;ble in PASCAL,
call-by-reference in FORTRAN). The paper is a continuation of Aft & de Bakker [3] pre-
sented at MFCS '76, and of its.successor Apt & de Bakker [4]. In the meantime various
problems not yet well-understood at that time have been pursued further and, we hope,
solved. i
Section 2 presents syntax and (denotational) semantics of our language; in section 3
we are confronted with an unpleasant consequence of our way of defining the semantics
of a block b new x; S e, and propose as solution to restrict our correctness consider-
ations to programs obeying the restriction that all such local variables x be initial-
ized. Section 4 introduces the proof system; in the course of trying to prove its
soundness we were somewhat shocked by the discovery that essential rules such as, for
example, the familiar composition rule turned out to be invalid with respect to the
natural validity definition, requiring a complicated refinement of that definition
to remedy the situation. Section 5, finally, discusses the completeness of the sys-
tem.
All-proofs are omitted in this paper; they are scheduled to appear in a forthcoming
publication.
Our paper could not have been writtem without Apt [1]. Though the technical results
differ (e.g., [1] does not treat parameter mechanisms, nor does it impose the initial-
ization requirement), there are many similarities, in particular concerning the valid-
ity definition and soundness proof. Also, the problem signalled at the beginning of
section 3 was found by K.R. Apt. Various other approaches to the topic of our paper
have appeared in the literature (Cartwright & Oppen [6], Clarke [7], Cook [81],
Gorelick [9], to mention only a small selection: for a detailed survey see Apt [2]).
However, out treatment of both soundness and completeness of the propoéed proof sys-
tem differs substantially from the techniques used elsewhere; in particular, we have

not encountered any analogue of our validity definition in its refined form.

Acknowledgement. As should be clear from the above, our paper owes a lot to the work
of K.R. Apt. J.I. Zucker contributed many helpful comments on a previous version.

2. Syntar and semantice

Convention. By writing "Let (ae)V be.the set such that ... "we introduce a set V, with
variable o ranging over V, such that ’

2.1. Syntax. “=" denotes identity between two syntactic objects. Let (n,m,e)Icon be
the set of integer constants, let (x,y,z,ue)Svar, (ae)Avar, (P,Qe)Pvar be the (infi-
nite, well-ordered) sets of simple variables (s.v.), array variables and procedure
variables. .)

Let (vywe)Ivax be the set. of integer variables. defined by v::= x|als]

eee (s,te)Iexp ... integer expressions ... s::-nlvlsl+sz|£§_b then s, else 8, fi

(be)Bexp boolean expressions b::=true|falsels,=s,|b|b, >b,
(se)Stat statements S::=vi=s|S ;S,|if b then S, else S, fi|
b new x; S el|B(t,v)
(De)Deck . declarations D::-Pl-B],,..,Pn-Bn, n20, and,
for 1si, j<n, (PiEPj)-o (i=j)
(Be)Pbod . procedure bodies B::=<val x, add y:S>, x#y
(Re)Prog programs R::=<D:S>
(p,q,re)Assn assertions p::-tr_uelsf;a_]ﬁvlsl-szI“lplp’:pzlax[p]
(fe)Form correctness
formulae (c.f.) ::-pl{p}S{q}lfl/\f2
(ge)Ggorn generalized c.f. gii=<D:f =f, >
Remarks.
1. He‘ write <D|S> instedd of <D:S>, and similarly in B and g. If R = <D|S>, with

D= <Pi4-Bi>I.:_l, and all procedure variables occurring in S or any of the Bi’
i=1,...,n, are included in {Pl,...,l’n}, we call R closed.

2. Our statements have local s.v. declarations, but, for simplicity's sake, no local
array or procedure declarations, nor array bounds.

3. In B = <val x, add y|S>, x is the formal value parameter and y the formal address
parameter, and, in P(t,v), t is the:.actual value par. and y.the actual address par.
,(cf. also the definition of syntactic application in. 2.2).

4. <D|f> is short for <D|true=f>.

5. For the intended meaning of "=" in alfomula g, cf. the remark on the validity of
<D|£,>

<D|f2>
2.2. Substitution and eyntactic application
Substitution is denoted by [*°*/...], e.g. we use notations such as s[t/x], P_[t/x],

sCv/x], sla'/al, S[Q/P], etc. In case a construct contains a variable binding operator

<D|fl-vf2> versus the soundness of below.

(in 3x[p] and b new x; S e, occurrences of x in p and S are bound) the usual precau-

tions preventing clashes between free and bound variables apply. A notation such as

sly, /%,]1-|
. cedure call only affects its parameters (i.e., P(t,v)[w/x]

implies that, for 1 < i, j < n, (xiExj) = (i=j). Substitution in a pro-
P(tlw/x1,vlw/x])), but
not the procedure body (possibly) associated with P in the accompanying declaration
D. svar(s), svar(p), avar(s), pvar(f), etc., denote the set of all free simple vari-

ables of s, of p, all array variables of S, all procedure variables of f, etc. Note

that svar(<val x, add y|S>) = évar(S)\{x,y}. Notations such as svar(D,p,S,q) should

be clear. We also employ the substitution s[w/v] etc., for the definition of which we

refer to de Bakker [5]. Constructs which differ at most in their bound variables are

called congruent. The congruence relation is denoted by "a".

Syntactic application is a technique of associating with a procedure body B and two

actual parameters t, v, a piece of program text B(t,v) such that, for B the body of

procedure P, B(t,v) embodies the meaning of P(t,v) according to the customary seman-

tics of the parameter mechanism of call-by-value and call-by-address: let

B = <val x, add y|S>.

(1) v = z. B(t,z) = b new u; u:=t; S[u/x][y/z]e, where u is the first s.v. not in
svar(x,y,z,t,S)

(ii) v = als]. B(t,als]) = b new u,,u,; upi=t; uyi=s; S[gl/x][a[u2]/y]g, where u, (u
is the first (second) s.v. not in svar(x,y,s,t,S)

2)

2.3, Domains

A cpo(xe)C is a partially ordered set with least element La such that each (ascend-
ing) chain <x1> =0 has.a lub Ll x;. Let > 02 be cpo's. If fl,f2: c, - C2, we put
f]Ef2 1f£f (x) C £ (x), allxeC

X, cC x, = f(x) E f(x). A monotonic function is called continuous if, for each chain

|+ For f£: C] > C2, we call f monotoniec if

<x:>., f(U X) = E f(x). Each continuous function £: C + C has a least fixed point
uf = Ll £ (1

Let VO be the set of integers, W, = {tt,ff} the set of truth—values, and E the (in-
finite, well-ordered) set of addresses. Let (ae)V = V v {1 1, (Be)w = W v {Jw},
(e€)E = E u {12} with a, £ a, iff a; = lV ora, = “2’ and gimilarly fot B, e. Let
(¢e)Intv = Svar u (Auan’<v) be the set of interms¥ate variables, and let intv(s) =
svar(s) v {<a,a> | a ¢ avar(s), aeV }, eté.. Let (ee)Env = Intv + E be the set of
environments which are required to sat1sfy let dom(e) = {£ € Intv le(E) ¢ ip ¥s
range(e) = {e € E| €(£) = e for some £ ¢ dom(e)}. Then (i) € is 1-1 on its dom31n

(ii) e(a,a) # i for some a € Vo ® c(a,a) ¥ L for all a € V (iii) Intv\dom(e) # 4@,
E \range(e) f p. Let, for y ¢ dom(c), e € E o\range(e), ' es- € U <y,e> denote the
extension of € such that €'(y) = e, and similarly for e u <y;se; >n w]® €U <<a,a>,

e> Vg’ etc. Let (ge)I = (E+V) u {1 } be the set of states, where, for c e E+ V,
o(e) = Ly iff e = 1ps and iy (1, for short)).e-J.V Let o{a/e} 4t 1, if 0 = 41,
and)e. l£ e=c¢e then a . else a(e) fi, otherwise. Let (¢e)M i Env > (£+1I), (ne)H === $£
Texp x Tvar + M, (ye)I a== df' Pvar + H, and let y{n /P } ‘be defined similarly to o{a/e}.
Let, finally (oe)H™ + H,

2.4, Semantics

The functions R: Texp + (I»V), L: Ivar + (I+E), W: Bexp + (I-W), N: Stat + (I-M),

M: Prog + (T-M), T: Assn > (Env - (z+{tt,££})), F: Form (T'+ (Env > (2> {tt,££}))),

and G: Gfor > (r‘-»{tt ff}) are defined by

a. If intv(s) ¢ dom(e) or o = L then R(s) (e)(o) = iy Otherwise, R(v)(e) (o) =
a(L(v) (e) (0)), R(m)(e)(0) = o, where a is the integer denoted by the integer con-
stant m, R(s +s)(e)(c) = R(s)(e)(c) + R(s)(t-:) (o), R(if b then eh else s, £i)
(e) (o) = if U(b)(e)(c) then R(s) (e) (o) else R(sz) (e) (o) fi.

b. If <ntv(v) ¢ dom(e) or o = 1 then L(v)(e) (o) = 1. Otherwise, L(x)(e) (o) = e(x),
L(als]) (e) (o) = e(a,R(s)(e)(0)).)

c. W(b). Omitted.

d. If Zntv(S) ¢ dom(e) or o = 1 then N(S) (v) ('e)(a) = L. Otherwise, N(v:=s)(y)(e) (o) =
“0{R(s) (e) (6) /L(v) () (o)}, N(8,38,) (Y) () (o) = N(s 2 (N NG (7)) () (),
NGE ... £i) = ..., N(b new x; Se) (y)(e) (o) = N(S[y/x])(y)(eu<y,e>) (o), where y
is the first s.v. not in dom(e) and e is the first address in E \range(e) (Remark.

E*

The use of a new s.v. y ensures that we obtain the static 8cope rule for proce-
dures.) N(P(t,v))(y)(e) (o) = y(P)(t,v)(e) (o).

e. If Zntv(R) ¢ dom(e) or o = 1 then M(R)(¥)(e) (o) = 1. Otherwise, let R = <D|Ss>,

D = <P, ~Bl>1,l M(R) (v) () (0) = N(S) (vin; /e, iy i=1)(€)(0), where <n ,...,n > =
u[ﬂbl....,d’ 1, and, for j = 1,...,n, Oj =)\n].- An sAteAv, N(B (t, v))(v{n /P k. e

f. If Zntv(p) ¢ dom(e) or 0 = 1 then T(p) (e) (o) = f£f. Othenuse, T(true) (s)(c) =
= tt, » T(3x[pl)(e) (o) = 3alT(ply/x1) (e v <y,e>) (c{a/e})], with <y,e> as in
part d. .

8. If intv(f) ¢ dom(e) or o = L then F(£f)(y)(e)(o) = ff. Otherwise, F(p)(y)(e)(o) =
T (e) (o), F{p}s{ahH (¥)(e)(0) = Vo'[T(p)(e) (o) Ac' = N(S)(¥)(e) (o) Ao’ # L =
T(q)(e)(a")], F(£,A£,) (1) (e) (0) = F(E,(Y)(e) (o) A F(fz)(Y)(E)(G)

h. Let g = <D|f -f2>, with D = <P, «B; > =p° Let Y = yin. /P1}1-1’ with n; as in parte.
G(g) () = [Ve such that intv(D, £,) dom(e), o# 1 [F(f Y(¥) () (0)] = Ve such that
intv(D,) € dom(e), o # 1 [F(fz)(y)(t:)(d)]]-

Validity and soundnese (first definition, to be modified below).
- a. kg (g is valid) iff G(g)(Y) = tt for all y ¢ T

1seees

b. An Znference is called sound whenever I-gl s95% ,l-g implies k=g.

Rerlnark Observe the d1ffetence between the validity of <D|f -bf2> and soundness of
<D|f1>

m_f—> Putting (i) de Ve such that Zntv(D,f.) < dom(e), all o # 1L [F(f.)(y)(c)(c)],
i = 1,2, we have that the former corresponds to Vy[(l)-(Z)], whereas t:he latter cor-

responds to the weaker fact that Vy[(1)] = W[(2)].

2.5. Lemmas. A number of. lemmas stating properties of our various constructs will be

used below. First we have a lemma relating substitution to state modification.

LEMMA 2.1. .

a. If intv(s,t,v) c dom(e) then R(s[t/v])(e) (o) = R(s) () (c{R(t)(e) (0)/L(¥)(e)(o)})
b. Similarly for b e Bexp, p € Adsn.

END 2.1,

Next, we have a useful property of closed programs, asserting that such programs only

affect the values of variables occurring in them: -

LEMMA 2.2, If <D|S> is-closed, y € T, Y as usual (cf. 2.4h) then, if (i) Zntv(D,S) ¢
dom(e), (ii) £ € dom(e)\intv(D,S), (iii) o' = N(S)(¥)(e) (o), o' # 1, then, (iv)

o' (e(€)) = a(e(§))

END 2.2,

The last lemma is rather technical, and foreshadows a property of statements to be
discussed in section 3. Notation. For § ¢ Intv, (oce)|§ denotes the function composed
of 0 and € restricted to §.

LEMMA 2.3. ’
. o n m = i g
a. Let m,n 2 0. If (i) -mi:v(s)\(xi]>i,_l\{<aj,<:t>c‘€‘,°}j_I c 8 ¢ dom(e) n dom(e), (ii)

(oo€) |8 = (goe)|6, (iii) For i = 1,...,n, either ale;) = o(e;), or x; ¢ evar(s), and,
for j = 1,...,m, either, for all a € Vo, o(ea j) = E(Ea j)’ or a, ¢ avar(s), then,
’ ’
1 1 ' = "/a
(:v) R(sEyi/xi]i[aj/aj]jZ(e U<yi’ei>i U <<<aj?°>’ea,j>a>j)(°) R(s[zi/xi]i[aj/aj]j)
(eu<z;,e.> v <<<a'j'.a>.ea,j>a>j)(c)

b. Similarly for b € Bexp and p e Assn.
END 2.3.

3. Initialization

The validity definition as given in 2;4 is, though rather natural, not satisfactory
for our purposes. First, it implies the validity of formulae such as (x): <|{true}

b new x;x:=0 e; b new x;y:=x e{y=0}>, or (¥*): <|{true} b new x;y:=x e; b new x;z:=x
ely=z}>. Thé source of this problem is that our semantics is overspecified in that,
when declaring a new local s.v., we want its initial value to be some arbitrary inte-
ger. Now in def. 2.4d, we take for this the value stored at the first' free address
and, in a situation such as (*), upon entry of the second block we find, as after-
effect of the first block, O stored at this. address. ((**) can be explained similar-
ly.) A solution to this problem is either to change the semantics (ensuring by some
flag-mechanism that no address is ever used twice as first free address), which we do
not adopt mainly because of severe technical complications, or to restrict our cor-
rectness considerations to programs in which all local s.v. are initialized. The second
solution is the one elaborated below (also motivated by the idea that the correctness
of programs containing uninitialized local s.v. is probably not very interesting any-
way). A second problem with the validity definition is the following: For reasons to
be explained below we have to consider in a formal correctness proof also non—closed
progr;ms in which case counter examples can be found to the validity of quite natural
c.f. such as <D|{p}S]{q} A {q}Sz{r} b'fpés];sz{t}>.,1he second problem is dealt with

in section 4; we now define the notion of initialization and state the main theorem

concerning it.

DEFINITION 3.1. (initialized s.v.) .
a. The set tnit(R) of all s.v. initialized in R is the smailest subset of Svar satis-
fying '

) If x ¢ svar(s) then x € Znit(<D|x:=s>).

(i) If x e init(<DlSl>), or x ¢ avar(sl) and x € init(<D|Sz>) then
X € init(<D]Sl;52>).

(iii) If x ¢ svar(b), x € init(<D|Si>),.i = 1,2, then x € tnit(<D|if b then S
else S, fi>). :

(iv) If x ¥y, x € tnit(<D|S>) then x € intt(<D|b new y; S e>).

(v) If D
x ¢ svar(t), x = v, and y; € init(<D|S, >), then x € init(iDIPi(t,v)>).

b. All local s.v. in a program <D|S>, with D = <P OB s

1

n . .
<P;B.>._, them, for i = I,...,n, if B, = <val x,, add yi|Si>,

=]

j=1° B; = <val X5 add yi'si>’
are initialized whenever for each statement b new x, So
ment of S or any of the Si» 1< i < n, we have that x € init(<D|So>).

END 3.1.

e occurring as substate-

For an initialized local s.v., the value associated with it throﬁgh def. 2.4d is ir-

relevant. This is one of the (somewhat hidden) messages of

.

THEOREM 3.2. Let .<D|S> be a closed program in which all local s.v. are 1n1t1al1zed.
Let n,m 2 0, and let y, Y be as usual. If
(1) intv(D) u GEntv(S)\(x,}, \{<a.,u> } 3) € 6 s dom(e) n dom(e)
(ii) (oce)|s = (c0e) |6
(iii) For i = 1,...,n, either a(e) = o(e,), or x, ¢ avar(s), or x; € intt(<D|8>).
“ROE J = Ve eigls elthfr, for all a € VO’ o(e) = o(e ;J), or a. ¢ avar(S).
(iv) N(S[yi/xi]i[aj!/aj]j)(z) (e_:u ‘yi’fi>i u <<<a§.m>.ecl 0”3)(a) =g’
N(S[zi/xi]i[aglaj]j)(Y)(e U<zg,e>. U <<<ag,a>,e ,J> >)(0) = o'
then
(v) (c'ee)|s = (a'oe)|$s
(vi) For i = 1,...,n, either o'(ei) = 3'(Ei),'or X ¢ svar(S).
For j = 1,...,m, either, for all a € Voo a'(ea’j) = c'(ea,j), or a, ¢ avar(s) .
END 3.2,

In section 4 two special cases of this theorem are of interest, mentioned in

COROLLARY 3.3. Let <D|S>, m,n3Y,y... be as in theorem 3.2.

a. If (i) intv(D,8) ¢ § < dom(e) n dom(e), (ii) (vee) |8 = (goe) |6, (iii) N(S)(¥)(e) (o)
=o', NS)F)(E) () = ', then (iv) (c'oe)[6 = (3'oE) |6 . '

b. If (i) intw(D) v (ntv(S)\x;};\(<a ;0> olj) € dom(e), (ii) (SLy;/x;1; ;€ al/a;1)
(Y)(ElJ<y 8> U <<<al,a>,e '">a>3)(°) =gq', N(S[z /x i [a"/a])(y)(elJ<z ’e1>1
u <<<ag,a> ea’j>a> :)(0) = o", then (iii) (a'oe)ldom(e) = (0"°e)|dom(e)

END 3.3.

T

Remark. Let us call a pair <o,e>, <0,c> matching with respect to 6 if it satisfies

condition (ii) of part a. We see that a program satisfying the indicated requirements

preserves the property of matching. Cor. 3.3b tells us that substituting different

fresh s.v. y, z (since y,z ¢ dom(e), y,z ¢ intv(D)

u (Zntv(S)\...)) for some x makes

no (essential) difference in the outcome, provided that they are associated with the

same address.
4. A sound proof system

The following proof system will be considered:
A. Rules about "='",

1. <D|f = true> (strengthening)
<D|fl-of2> .

2e <D|flA§3-of2-> (weakening)
<D|f]-vf >,<le2-of3>

3. <D'fl"f3> (transitivity)
<D|f-fl>,<le-f2>

4, D] MZAEZ> (collection)

5. <lelA...Afn~fi>,>n 21,1<i<n (selectiom)

B. Rules about programming’concepts. ’

6. <p|{plt/v]}vi=t{p}> (assignment)’

7. <D|{p}sl{q} A {q}sz{r} - (p}Sl;Sz{r}> (composition)

8. <D|{PAb]Sl{q} A {pA-lb)SZ(q} = {p} if ... fi {q}> _ (conditional)

-2

- <D|{p}Sly/x1{q} = {p)b new x; S e{q}>
provided that y ¢ “svar(D,p,S,q)

10. Let 2 be a procedure constant such that N(Q)
. s .
<<Pi"Bi>i|f[ﬂ/Qi]i>,<<Pi¢-Bi>ilf-vf[Bi/QiJi>
<<Pi¢-Bi>i|f[Pi/Qi]i>

where Q; ¢ pvar(Pl,...,Pn,Bl,...,Bn), and Bi

T PRV,
C. Auxiliary rules

11. <pl(p2p,) A {p,}8{q,} A (q,3q) = {p}s{q}>
1 1 1 1

(s.v. declaration)

= AyeAteAVeAeecAgeLle

(induction)

Bi[Qj/Pj]js

(consequence)

