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PREFACE

This volume represents the proceedings of an intensive week of complex analysis
at Penn State which was held during the week of March 10, 1986. The conference was
attended by about fifteen people with similar interests, and every participant
attended every lecture. The result was an enjoyable and rewarding exchange of ideas.

The lead article in this volume is a rather personal assessment of progress in
Several Complex Variables in the past fifteen years. Subsequent articles in the
volume point to a number of new paths which we expect the subject to follow. We
hope thﬁt the volume will be especially helpful to students and new members in the
field, as well as to people who are already established.

We are grateful to the Department of Mathematics and the College of Science at

the Pennsylvania State University for funding this conference.

Steven G. Krantz
St. Louis, Missouri USA
March, 1987
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Recent Progress and Future Directions in Several Complex Variables

Steven G. Krantz
Department of Mathematics
Washington University
St. Louis, Missouri &3130

Section 0 Introduction

I doubt that anyone is qualified to produce a list of the most
important results in several complex variables from the last ten or
fifteen years--certainly I am not. What I want to do here is to
comment on a few areas with which I have some familiarity, and on which
the talks given at this conference impinge. A lot has been written
about the fallout from the construction of integral representations by
Henkin, Ramirez, and others (see [HEN11] and [RAMI). And the
significance and pervasiveness of the theory of the 3-Neumann problem
and the weighted L2

Therefore I would rather concentrate here on the consequences of a few

estimates of Hormander seem to be well-Known.

key events which occurred in the early 1970’s. These are the

following:

(i) The Kohn-Nirenberg example (1973)
(ii) The worm domain (Diederich and Fornaess, 1977)
(iii) Bounded strictly plurisubharmonic exhaustion functions
(Diederich and Fornaess, 1977)
(iv) Points of finite type and subelliptic estimates for the
3-Neumann problem (Kohn, 1972)
(v) Fefferman’s mapping theorem (1%74)

It is my view that these discoveries, and related results by dozens of
other mathematicians, have completely altered the way that we think
about several complex variables and, in particular, they have changed
the course of research.

The fundamental change that has occurred is simply this: much of
the work prior to the early 1970°s, and even the work that goes into
the original proof of Fefferman’s mapping theorem, entailed a very
careful wunderstanding of strongly pseudoconvex points. The Levi
problem had been reduced to the strongly pseudoconvex case in the
1930°s, and the solution of the Levi problem in the 1950’s included a
detailed analysis of the local geometry of the positive definite Levi

form (see, for instance, [BER]1). Likewise, Kohn’s solution of



the 3-Neumann problem (see [FOKl)> hinged on a consideration of the
Neumann boundary conditions at strongly pseudoconvex points,
Fefferman’s work in ([FE1]l required a much deeper analysis of the

approximations of strongly pseudoconvex domains by balls. It is safe
to say that Fefferman’s work in [FE11l, [FE21, [FE3], including work of
Folland/Stein [F0OS1]1 and others that it built on, represents the
deepest understanding to date of strong pseudoconvexity.

What is very striking is that, until the early 1970°s, no one had
thought carefully about weakly pseudoconvex points. As recently as
1972, experts were still conjecturing that a weakly pseudoconvex point
is, up to local biholomorphic equivalence, weakly convex (this would be
in analogy with the fact, which in 1972 had been Known for nearly
twenty  years, that a strongly pseudoconvex point is locally
biholomorphically equivalent to a strongly convex point). We now
realize that such a conjecture is not even approximately correct, at
least not in a form that gives useful results. In fact we are only
beginning to understand weakly pseudoconvex points.

By the same token, it has long been Known that weakly pseudoconvex
domains can be exhausted by smoothly bounded strongly pseudoconvex
domains. It was generally believed that weakly pseudoconvex domains
could be approximated from the outside by strongly pseudoconvex
domains. That such is not the case (see [DF11) came as quite a shock.
See Section 1 for further details.

In the next three sections I would like to use items (i) — <(wv)
listed above as a vehicle for discussing what we have learned about
pseudoconvexity, and what remains to be done. It should be stressed
that I am concentrating on only a portion of the theory of several
complex wvariables——that which derives primarily from the Princeton
school . But it is this collection of ideas with which I am most
familiar, and which to my mind has yielded the most novel ideas and
techniques in the past decade or so. While the inner functions
problem, the corona problem, and many other programs have also had
strong effects on several complex variables, they are not salient to
the theme of this paper and I shall not discuss them.

The reader is advised to refer to [HO] or [KR1] or [RANZ] for basic

definitions which bear on the discussion that follows.

Section 1 The Kohn-Nirenberg Example, the Worm Domain,

and Related Phenomena

The most important elementary fact about a strongly pseudoconvex
point P in the boundary of a domain Q is the existence of a local



holomorphic separating function for Q at P. Indeed, if

©=+(z e€c" 1 ptz) < 0

satisfies

n 2
e 22 _prwm, » Clwl?  bwec”
Jj,k=1 3z .3z J
%%k
then
n a3 n a2
Lp(z) = I —2-(P)(zj -PY>+ T ———-P——<P)(zJ - Pz, - P
i=1 3z, J J,k=1 3z .3z J
J J7°K
satisf?es
QN <z : 1z -Pl <ey, Lp(z) = 03 = (P}
when €0 > 0 is small. Alternatively, once one notices that there is

a local biholomorphic change of coordinates near P which renders 3Q
strongly convex, say that in the new coordinates (wyyena,w) the
domain © near P has defining function p¥(w> and that P «— P* ,

then it is clear that the pullback of

* ¥*
otwd 2 £ BB oy, — P* 3
3w . J J
J

near P will be a local holomorphic separating function.

The existence of holomorphic separating functions is a critical
step in the solution of the Levi problem <(see [BER]1). In the
construction of integral formulas using the Cauchy—Fantappi; machinery,
the existence of global holomorphic separating functions (gotten from
local holomorphic separating functions by solving a suitable cohomology
problem)> is fundamental. Holomorphic separating functions provide
important information about optimal regularity for the 3 problem (see
[KR21). Finally, holomorphic separating functions are very closely
related to holomorphic peaking functions which, in turn, are basic for
function algebraic considerations.

Were the aforementioned conjecture, that smoothly bounded weakly
pseudoconvex domains are locally biholomorphically equivalent to weakly

convex domains, in fact true then the pullback of

* *
gtz s £ OB CP Doy, - p¥.y
aw. J J
J

where p*(w) is a defining function for the convex domain, would give



a weak local holomorphic separating function hP at each point of the
boundary. This would mean that

PeQn <z : Iz - Pl €g » hp(z) =0} C3Q .

In 1973 Kohn and Nirenberg [KON] destroyed this optimistic program by
proving that the point (0,0 in the boundary of the smooth,

pseudoconvex domain

Q= (Czy,2p) € €% 1 Re z5 + lzyz,1% + 12,18 + l7§|z1|2Re(zl)6 < 03
has no Jlocal holomorphic separating function. Indeed if h is
holomorphic in a neighborhood of 0 and h(0) =0 then h wvanishes

infinitely often on Q in every neighborhood of 0 . In particular we
see that the Kohn-Nirenberg domain is not locally biholomorphically
equivalent to a convex domain near 0 . Hakim/Sibony and Sibony (see
[HS11,[SI11) have subsequently obtained stronger examples which show
that weakly pseudoconvex boundaries cannot necessarily be made locally
convex even with a biholomorphism from one side.

We now understand that the domains constructed by Kohn/Nirenberg
and Hakim/Sibony are weakly pseudoconvex domains of the most tractable
sort: that is, the the Levi form vanishes at the bad points, but only
to finite order. Such points are called finite type (see Section 2)
and for many purposes they are as good as strongly pseudoconvex points.
The lesson to be learned is that even if one restricts attention to the
simplest weakly pseudoconvex domains, even in Cz, the notion that
pseudoconvexity is a biholomorphically invariant version of convexity
is far too simple—-minded.

The Kohn-Nirenberg example inspired a number of people to
investigate holomorphic separating functions, peak points, Eilou
boundaries, and related phenomena. The papers [HS11, [BL1]1, [BL2],
[SsI11, [SI21, [FO11, [BEF] give an overview of some of this work.

Another drive to reduce the study of weakly pseudoconvex domains to
the more tractable strongly pseudoconvex domains was the problem of the

Nebenhille. I1f Q@ is a (pseudoconvex) domain then Q is said to have

a Stein neighborhood basis if Q@ =N QJ , each QJ is strongly

pseudoconvex, and QJ 2 Q each j . If Q does not have a Stein

t—9 J"’l ’
neighborhood basis then

n @ Q@ 2Q , Q7 is strongly pseudoconvex?}

is called the Nebenhille of Q
It was commonly supposed, if not fervently hoped, that every smooth



pseudoconvex domain has a Stein neighborhood basis. In retrospect,

this was probably a bit optimistic. For the Hartogs triangle
T = ((21’22) 3 Izll < I22I <13

has a very large NebenhuUlle. To be sure, aT is only Lipschitz, but
there is no substantive reason why smoothly bounded domains should be
better behaved.

In any event, it was quite a surprise when in 1977 Diederich and
Fornaess [DF11 exhibited the “"worm domain": a smoothly bounded
pseudoconvex domain with non-trivial Nebenhulle. It was a difficult
lesson to accept that pseudoconvex domains look a lot different from
the inside than from the outside——in particular they are much more
subtle fhan convex domains. But this remarKable discovery gave a great
impetus to the research of the 1970°s.

I would be remiss at this point not to mention the one piece of
good news that came along in this time period: the discovery of the
bounded strictly plurisubharmonic exhaustion functions [DF2]1. In fact,
given any smoothly bounded pseudoconvex domain Q then there is a
defining function p for £ and an % > 0 such that p = - (- pd"

satisfies

Ci) 6 is strictly plurisubharmonic on Q ;
(ii) p <0 on €, p=0 on 30 ;
(iii) © =(z€Q :p(crCCQ,all c<0;
Civ) If K CC Q then there is a ¢ < 0 such that K € Qc P

For many purposes, the bounded plurisubharmonic exhaustion function is
a good substitute for the program that the Kohn—Nirenberg example and
the Diederich—-Fornaess example Killed. It has proved particularly
useful in studying the holomorphic mapping problem (see for instance
[BEL] and [DF41).

One very important lesson that was learned from the Kohn-Nirenberg
example and the two results of Diederich and Fornaess is that there is
no substitute in several complex wvariables for hard calculations.
These papers set the tone for the decade of research that followed.

Section 2 Points of Finite Type and Subelliptic Estimates

Let Q@ = {z : pCz) < 0} C E2

aQ is said to be of finite type m € z+ if there is a nonsingular

have smooth boundary. A point P €

complex variety V such that



IpCudl ¢ Clu = PI™L e v
while there is no nonsingular complex variety VUV’ such that
lpCu’dl ¢ Clvs - PI™2 s cyr |

The notion of finite type is unoriented: it cannot distinguish between
pseudoconvexity and pseudoconcavity. Thus it turns out that the only
points of type 1 are strongly pseudoconvex points and strongly
pseudoconcave points. Pseudoconvex points are always of odd type. In
the domain
2 2K
((21,22) 2 Izll + I22| <13,
boundary points of the form (eio,O) are of type 2k -1 .
The notion of finite type helps us to quantify the idea that
strongly pseudoconvex points are generic in the boundaries of smooth

pseudoconvex domains. For if U C 302 C c2

is a relatively open subset
containing only points of finite type exceeding one, then U consists
only of points where the Levi form vanishes. In other words, U
consists only of points where the Levi form has zero rank. It follows
(see [KR1]1) that U is foliated by one dimensional complex manifolds.
As a result, each point of u is of infinite type, and that is a
contradiction.

Continuing to restrict attention to c2 , we now give another
(equivalent) definition of finite type. If Q = {z: p(z) ¢ 02 is a
smoothly bounded domain in cz s, P € 3¢ , and QE-(P) 20 , we define a

822
vector field in a neighborhood of P by

L=23e(py 8 _ 3p(py_ 3
822 z, dz, dz,

Then L , L span (over R) the complex tangent space to 3Q at points
near P . Their span has no component in the complex normal direction

2 = xm[—a&ntp)i + 30 py 3] .
az1 azl 322 3z

However define

Ly = spanR(L,E)
Ly = spanp(t,[t,,L],024,01)

1l



b = spanR{LJ_l,[LJ_l,L],[LJ_I,E]} .

J

We call P a point of finite type m if f contains no element

with non-zero component in the direction z nL:ile Lm does contain
such an element.

Implicit in Kohn’s paper [KO11l is the fact that the two definitions
of finite type which we have given, one in terms of order of contact of
non-singular varieties and the other in terms of commutators of vector
fields, are equivalent. The main thrust of Kohn‘s paper [KO1l was to
show that, in c2 , finite type points P are precisely those near

which “a-subelliptic estimate for the 3-Neumann problem of the form

Mg ¢ condun® + na¥un?
holds. Here u is a test function supported in a neighborhood of P ,
||u||E is a tangential Sobolev norm of order € , and nu is the
O0-order Sobolev <(or L2) norm. Kohn estimated € in terms of the type

m and subsequent work in [GR] and [KR21 showed that this estimate
is sharp.

Since 1972, there has been a great deal of work to determine the
correct analogue of "finite type", to determine the sharp value for ¢
’ and also to determine the right necessary and sufficient conditions
for subelliptic estimates for the 3-Neumann problem, in dimensions
exceeding two. Bloom and Graham [BG] formulated a definition of finite
type (in any dimension) in terms of order of contact of complex
hypersurfaces and proved this definition to be equivalent to one in
terms of commutators of vector fields. While this notion of type was
helpful to those thinking about peak points and holomorphic support
functions (see [BL11,[BL21,[HS11), it soon became clear that it was
not the right condition for subelliptic estimates.

Kohn’s important work in [KO2] gave a sufficient condition, in
terms of ideals of forms, for the existence of subelliptic estimates
for the 3-Neumann problem on forms in any dimension. He conjectured
that his condition would also be necessary. At about the same time,
D’Angelo and Catlin initiated a deep and protracted study of the
program which Kohn initiated.

In a series of papers, D’Angelo developed from first principles an
algebro—geometric theory of points of finite type. His semi—continuity
result in [DAN] signalled that he had found the right theoretical

framework. Meanwhile, Catlin built on D’Angelo’s ideas and use his own



deep insights into the construction of plurisubharmonic functions as a
tool for attacking the problem of subelliptic estimates. From the work
of D’Angelo and Catlin there evolved the following definition of finite

type in Cn H

Definition: Let @ = (z € ¢"
cn

: p(z) < 02 and P €3Q . If v: ¢ —
is holomorphic and (0> = P then define

T(y) = Ypo¥)
v(y)

where v(*) denotes the order of wvanishing of % . Define the type
T(P> of P to be

TP)

sup T(T)
Y

We say that P is of finite type if and only if T(P) < «

Catlin [CATZ2] has proved that if aQ is pseudoconvex near P
then a subelliptic estimate holds near P for the 3-Neumann problem
if and only if P is of finite type. Diederich and Fornaess [DF3]
have proved that a bounded pseudoconvex domain with real analytic
boundary is of finite type. This means that, given a bounded domain Q
with real analytic boundary, there is a number M > 0 such that each
point of 3o has finite type not exceeding M . These results
represent some of the most important progress made in several complex
variables in the last fifteen years. They provide us with a large
collection of domains on which the basic constructions of complex
function theory can (at least in principle) be performed. Section 3
contains some particularly dramatic applications of these results.

It is my view that an important direction of future research ought
to be the detailed study of harmonic analysis on domains of finite
type. The development of Fatou theorems, Lusin area integrals, and
admissible maximal functions in the special case of strongly
pseudoconvex domains has already led to new understanding of singular
integral operators, covering theorems, spaces of homogeneous type, and
the other tools of harmonic analysis (see [ST1], ([FO0S11). More
recently, progress has been made on domains of finite type in C2 (see
[NSW13,[KR41). It is becoming increasingly clear that invariant
metrics, such as the Bergman, Caratheodory, and Kobayashi metrics, will
play a wvital role in the final wunderstanding of these issues
([KR31,[KR41>. A careful understanding of Catlin’s work should lead to

new developments on domains of finite type in c" , N> 2 .



The papers of D’Angelo in this volume provide a valuable discussion
of points of finite type, both from the point of view of commutators
and the point of view of algebraic geometry. I hope that they will
enable a new generation of researchers to consider (i) the behavior of
invariant metrics near boundary points of finite type (see [CAT1] for
results in Cz), (ii)> the theory of quadratic integrals, such as the
Littlewood-Paley =] function and the Lusin area integral, near ponts
of finite type (see [ST1], [NSW1l, [KR41), (iii) boundary behavior of
holomorphic functions near points of finite type (see [NSW11,[KR31],
[KR41), <(iv) the theory of "real Hardy spaces" near points of finite
type (see [FES1, [F0S21), <(v)> asymptotic expansions for canonical
Kernels (such as the Bergman, Szego, and Neumann kernels) near poins of
finite type (see [GRS], [NSW31)>, and (vi) construction of non-canonical
kernels (such as the Henkin-Ramirez Kernel) near points of finite type
(see [GRS1, [FO02] for results in 02).

Section 3 The Fefferman Mapping Theorem and Related Results
In [FE1l, C. Fefferman proved the following striking result:

Theorem: Let Q1 and 92 be smoothly bounded, strictly pseudoconvex
domains in c” . Let &: Ql — Q2 be a biholomorphic map. Then &

extends to a diffeomorphism of Ql to Qz o

Fefferman’s proof involves a detailed analysis of the asymptotic
behavior of Bergman metric geodesics at the boundary and the details
are too cumbersome to be presented here. More relevant for our
purposes is a consideration of the impact of this theorem. Besides the
solution of the Levi problem (and related topics such as the 3-Neumann
problem), this was one of the very first theorems proved about a class
of domains. It was certainly the first such result about holomorphic
mappings. Prior to Fefferman, consideration of holomorphic mappings
proceeded by explicit calculation of mappings of explicitly given
domains described by polynomial inequalities. While these calculations
were often quite difficult (see [HUAl)> and involved powerful machinery
(e.g. the Lie theory in the program of Cartan--see [HELl), they
represent what can now be safely called a classical chapter in complex
analysis. Even though the details of Fefferman‘s proof are extremely
difficult, it should be stressed that the statement of the theorem is
readily accessible; moreover the very form of Fefferman’s results
already leads to new insights.

As an instance of this last remark, Klembeck [KL] used Fefferman’s



10

asymptotic formula for the Bergman Kernel to calculate the asymptotic
boundary behavior of the Bergman metric on a strongly pseudoconvex
domain. One result is that the holomorphic sectional curvature of the
metric approaches that of the ball. Coupled with a result of Lu
Qi-Keng about complex manifolds of constant holomorphic sectional
curvature, this yields a new proof of Bun Wong’s theorem: the only
strongly pseudoconvex domain with transitive automorphism group is the
ball. Greene and Krantz ([GK11l, [GK21, [GK3l), using Kelmbeck’s work
as inspiration, were able to do a more detailed analysis of Fefferman’s
asymptotic expansion and thus to learn how the group of biholomorphic
maps of a domain depends on the boundary of that domain.

Probably the most profound consequence of Fefferman’s theorem is
that it vindicates a program of Poincaré to calculate (biholomorphic)
differential boundary invariants for strongly pseudoconvex domains. A
formal argument with power series ([FE11,[6K41) shows that the
invariants exist in principle, but one needs to Know that
biholomorphisms extend smoothly to the boundary before these "potential
invariants" can be considered true invariants. Immediately following
Fefferman‘s result, Chern and Moser [CM] completed Poincaré’s program
in principle in that they showed how the invariants can be calculated.
Their results were to some extent anticipated by those of Tanaka in
[TAN]. Burns, Shnider, and Wells ([BSW],[BS]) used the invariants to
obtain important insights into the biholomorphic self-maps of domains.
Perhaps the deepest work on the boundary invariants has been done by
Fefferman himself in [FE21, [FE31l. In these papers Fefferman gave,
among other things, an effective procedure for deciding whether two
strongly pseudoconvex boundary points are biholomorphically equivalent.
It should be stressed that Fefferman’s results here, while very
complete, apply only to biholomorphic equivalence at a single point.
Much less is Known about global obstructions to biholomorphic
equivalence (however see [GK21, [GK31, [GK41,[BED11,[BDAl)>. For weakly
pseudoconvex domains, even though there are many results about
smoothness to the boundary of biholomorphic mappings, essentially
nothing is Known about biholomorphic differential invariants in the
boundary. Even the case of finite type 3 in 02 has not been
developed. Clearly there is much important work to be done in this
area.

Fefferman’s theorem has also inspired many people to consider both
extending and simplifying the biholomorphic mapping theorem. A very
detailed survey of this work was given by Bedford in [BED2], and 1
shall only make a few remarks about it here.

The explicit nature of Fefferman’s asymptotic expansion required

the creation of a delicate calculus of singular integrals (Boutet de



