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Introduction

The present book is devoted to the ordinary differential equation
(B¢ + k4 )™+ (=0 — k- )"~ w(t) — w(t)w(t) = f(2), (0.1)

where 0; is the differentiation with respect to the variable ¢, and k4, k_
are real numbers, ky > k_, and m4,m_ are positive integers. In the case
k+ = —k_ = k and my = m_ = 1 the equation (0.1) becomes the classical
Sturm-Liouville equation

—w’ (t) + (k? — w(t))w(t) = f(¢),

which is of importance both in mathematics and in physics. We shall assume
a priori that the coefficient w in (0.1) is measurable and non-negative, and
introduce various assumptions about w in different parts of the book.

Whereas asymptotic properties of solutions to the Sturm-Liouville equa-
tion as well as their oscillation and positivity properties have been intensively
studied, for the time being there are no similar results for the equation (0.1).

The purpose of the present book is to develop a detailed theory of the
equation (0.1), which includes

e conditions of solvability

o classes of uniqueness

e positivity properties of solutions and Green’s functions
e asymptotic properties of solutions at infinity.

Being of independent interest, the equation (0.1) also proved to have
important applications to differential equations with operator coefficients and
elliptic boundary value problems for domains with non-smooth boundaries.
To be more specific, solutions of (0.1) serve as majorants for solutions of
operator equations and boundary value problems.

The first chapter is devoted to the equation

(8 + k)™ (=0, — k_)™w(t) = £(t) (02)
on R The starting point is a construction of Green’s function, which appears
to be positive. From two-sided estimates for Green’s function we obtain suf-
ficient conditions for the solvability of (0.2) both necessary and sufficient in
the case f > 0.



VI 0. Introduction

In Chapter 2 we consider the equation (0.2) on the positive semi-axis
complemented by the boundary conditions

(0 + k4 ) wlt=o0 = fj, j = 0.,y — L.

We obtain the following “positivity principle” for arbitrary solutions of the
non-homogeneous problem. If f > 0 on (0,00) and f; > 0 then w > 0 on
(0,00). A similar positivity principle is proved for the equation (0.2) on the
bounded interval. (In the case of the second-order equation (0.2) such results
are, of course, obvious corollaries of the maximum principle).

In Chapters 3-7 we consider various properties of the equation (0.1) on
R with non-zero w. We start with the case w = const (Chapter 3), then
consider variable w > 0 subject to a certain mild condition formulated in
terms of Green’s function for the equation (0.2) (Chapters 4 and 5). We
find Green'’s function for the perturbed equation (0.1) and prove very general
existence and uniqueness results, formulated in terms of this Green’s function.
We construct solutions under very weak assumptions about the function f
and prove that they belong to a uniqueness class. In Chapter 5 we also extend
the positivity principle to the equation (0.1) on R, .

Abstract formulations derived in Chapters 4 and 5 are made more visual
in Chapter 6, where we consider several special classes of w. In Chapter 7 we
find asymptotic representations of solutions to the equation (0.1) at infinity.
We show, for example, that the solution w of the homogeneous equation (0.1)
satisfies the asymptotic formula

w(t) ~ const e *+%t7,

where 0 < 0 < my — 1, if and only if
o0
/ ™+ =14(1)dr < 00
1

It seems that the equation (0.1) did not attract special attention before.
However there exists rich bibliography concerning qualitative and asymptotic
theories for higher order linear ordinary differential equations with variable
coefficients. We mention only the books by Kiguradze, Chanturia (1993),
Eastham (1989), Lomov (1992) and papers Levin (1969) and

Eloe, Ridenhour (1994) where readers can find more references.

In Appendix we briefly discuss one of the mentioned already applications

of previous results. We consider a class of ordinary differential equations

k=l dk
> Ax(t)Zzu(t) = F (1) (0.3)
k=0

with operator coefficients acting in pairs of Hilbert spaces first studied by
Agmon, Nirenberg (1963). It appears that solutions of (0.3) satisfy the fol-
lowing “comparison principle”
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[[ullwis,e41) < const w(t) (0.4)

where W' is a certain abstract Sobolev space on the interval (t,t + 1). The
majorant w(t) in (0.4) satisfies the equation (0.1) with

F(@) = |F||Lat,t41;Ho)

where the norm is taken in the space of abstract functions with values in a
Hilbert space Hp.

Hence the information on the equation (0.1) obtained in the book leads
to “pointwise” estimates for solutions of the operator differential equation

(0.3).
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1. Basic Equation with Constant Coeflicients

1.1 Introduction

Let k_, k4 be real numbers and m,m_ be positive integers. In this chapter
we shall study the equation

(8, + ki)™ (=8, — k_)™-w(t) = f(t) on R (1.1)

In Sections 1.2 and 1.3 we study Green'’s function for (1.1) and show that the
condition

/ eFFT(14+ | T )™F | f(71) | dt < o0 (1.2)
Ry

is sufficient and in the case f > 0 necessary for the existence of the solution
w to (1.1) which satisfies

lim ¥t | w(t) |=0
t—+o00

(Proposition 1.3.1). The less restrictive condition

. . k':’Ft —
ltlin:tlgge | w(t) |=0 (1.3)

describes a uniqueness class of solutions to (1.1) with f subject to (1.2). In
Proposition 1.4.1 we prove that the requirement

o0
/ ef+T(1+7) | f(7) | dT < > (1.4)
0
for some j = 0,...,m4 — 1, along with (1.2) implies the asymptotic repre-
sentation
m+—1

w(t)=e"k*t( > ast3+0(t’"+‘1‘f)) as t— +oo.

s=my—1=3

Moreover, (1.4) is necessary for this representation if f > 0.
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1.2 Green’s Function for M(8;) on R

Let k4, k_ be real numbers, ky > k_, and let m,, m_ be positive integers.
We denote
M(0:) = (0 + k)" H (=0 — k=)™~

All solutions of the homogeneous equation
M(8)¢(t) =0, teR,

are
E(t) = e M+ T, (t) + e H-IT_(t), (1.5)

where IT. are arbitrary polynomials of degrees m4 — 1.
We denote by g Green’s function for the operator M(3;), i.e. the solution
of the equation
M(B)g(t) =6(t) on R, (1.6)

subject to
g(t) =o(e™**') as t— *oo,

where ¢ is Dirac’s function.

Lemma 1.2.1. The following formulae hold:

m+—1
_ T (my+m_ —2— e —m
s =cr > 5 ( b i ") (ky — k_)~me=m=*ite (17)
g=0 * -
fort >0 and
m--—1
_ =t)? (my+m_ —2 i
g(t) — k_t Z ( q') < + . - q) (k+ _ k_) + —+1+gq
q=0 '
(1.8)
fort < 0.
Proof. By using the Fourier transform we obtain
1 zAtd)\
g(t) ="M — ° (1.9)

21 Jor=p (A = iky)™+ (A —ik_)™-’

where 3 € (k_,ky). For t > 0 we have

mg=1 (it)m+—l—s
glt) = ieTkrtimo—me go ne =19
» (—m_)(—m_=1)...(—m_- —s+ 1)(ik+ _ik_)-m-=s

s!

which yields (1.7).
If t <0 then
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m_—1

o) = iertgmme 5 GO
2 Tm-—1-9)

x (_m+)(_m+_11;-'(—m+ _S+1)(ik_ _ik+)—m+—s

and we arrive at (1.8). O

We collect several simple properties of g(t) which follow directly from
(1.7), (1.8) and (1.6).

Proposition 1.2.2. (i) The following inequalities hold:
cre M1+ )™ < g(t) < cpeFHE(1 4 )™+ !

fort >0,
cre™ 4L+ [H)™ 1 < g(t) < cpeH=H(1 4 o)™
fort <0.
(ii) Forallt e R and 3 =0,1,...,my +m_ —1

029(8)] < c g(t). (1.10)
(iii) The inequality
g(t) < ceFF=t)g(t,)
holds for t; 2 ta.
(iv) For allt,T € R, tt <0
gt —7) < cg(t)g(-7).
(v) There exist constants ¢y, cz, such that

t—1T1
cie”F-t < sup glt—7) <coe k-t for t>0,

rer 9(—-7) ~

t—r
cre”F+t < sup 9 ) < cge k+t for t<0.
rer 9(—7)

The following assertion shows that one can apply some differential oper-
ators to g with preservation of positivity.

Proposition 1.2.3. The inequality holds
(O + k)™ (=0, —k_)g(t) >0 for n<my, j<m_. (1.11)
Moreover,
(0 + k+)m+( -0 — k_)jg(t) is positive for t <0

and equals O fort > 0 if 7 < m_. Besides (0y + k4 )"(—8; —k_)™~g(t) equals
0 for t <0 and is positive for t >0 if n < my.
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Proof. Introduce the polynomial

n—1

™ (k+n—2—
P(k,n;ﬂ:Z_'( g ‘1) (1.12)
=0 T
for k>1, n>1, and
n—1
P(O,n;T):m,P(k,O;T):O

for n > 1, kK > 1. It can be verified directly, that

(- 0-+1)P(k,n;7) = P(k—1,n;7) (1.13)
and
8.-P(k,n;7) = P(k,n — 1;7). (1.14)
Since
9(t) = (ky — k)1 e T M P(m my; (ks — koY) (1.15)
for t > 0 and
g(t) = (ky — k) M+ e -t P(my m; (k- — k4 )t) (1.16)

for t < 0, we have for t > 0
(B + ky)"(=00 = k) g(t) = (ky — ko) mHo+1mme —mm g hat
xP(m_ —j,m4 —n; (ks — k-)t) (1.17)
and for t < 0

(8 + k)™ (—8, — k_) g(t) = (ky — k_)"HIT1i-ms+—m- =kt
xP(my —n,m_ — j; (k= — ky)t). (1.18)

1.3 Necessary and Sufficient Condition
for Solvability

Consider the equation

M@@)w=f on R, (1.19)

where f € L 1oc(R) and w belongs to the class WS;:’"‘ (R), i.e. it is abso-
lutely continuous with its derivatives up to order m4 + m_ — 1.

We prove an existence result.
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Proposition 1.3.1. The condition

/m g(~7) | F(r) | dr < o0

— 00

or, which is the same,

/w e5-7(1 + 7)™ f(r)|dr < oo, (1.20)
0
and "

/ 47 (1 4 |r)™ 1| f(r)|dr < o0 (1.21)

is sufficient and in the case f > 0 necessary for the ezistence of the solution
w of (1.19) subject to (1.3). This solution is represented in the form

w(t) = / gt —71)f(r)dr (1.22)
and satisfies
. —k_t
ZCES b Bl g a2

where 7 =0,1,...,my +m_ — 1.

Proof. Let (1.20) and (1.21) be fulfilled and w be given by (1.22). Then by
Proposition 1.2.2 (i), (iii)

J —k_t _—kyt o dr
ofu(e)] < ¢ max{e™t, et} [ g(=n)lf(r)

for j =0,1,...,m4 + m_ — 1. Hence w has my4 + m_ — 1 locally bounded
derivatives.
Since

t
(0 + k+)’”+"1( -8 —k_)™w(t) = / e~ k+(=7) £(7)dr,

the (m+ +m_ — 1)-th derivative of w is absolutely continuous and w satisfies
(1.19).
Let us prove (1.23). By Proposition 1.2.2 (ii) and (i), we have

o <o [ e i s lar

—0o0

+ /too == (14 7 = )™= f(7)dr) (1.24)

for large positive ¢t. The first integral in (1.24) can be estimated by



