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Foreword

The International Society for the Interaction of Mechanics and Mathematics
(ISIMM) was founded in 1977. Its purpose is to promote cooperative research
involving the fields of mechanics and pure mathematics.

Its Executive Committee decided that, from time to time, scholarly works
relevant to the Society’s interests should, by invitation, be published under its
auspices. The present volume is one in this series which, it is hoped, will help to
advance the objective of the Society.

The Editorial Board



Preface

Nowadays it is possible to teach and learn thermodynamics in a deductive
manner: Once the general equations of irreversible thermodynamics are laid
down, the specific field equations for density, motion and temperature follow
by the exploitation of universal physical principles and by the restriction to a
particular class of materials. The classical relations of thermostatics follow for
equilibrium.

This deductive procedure is most clearly described in Chapter 1 and it is
reflected over and over again in Chapters 6—13, each one of which is concerned
with a different class of materials. Chapters 2-5 derive or motivate the general
principles of thermodynamics and in some cases they point out their
limitations.

The book has grown out of many years of teaching thermodynamics at the
Johns Hopkins University in Baltimore, as well as at the Universities of
Dusseldorf, Paderborn and Berlin. Students and colleagues have contributed
to it by making suggestions and giving advice, and their encouragement is
gratefully acknowledged here. Special thanks are due to Mr G. M. Kremer
who carefully read the manuscript and corrected many errors. Frau H. Berger
typed, retyped and corrected the manuscript with infinite patience.

Ingo Muller
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1 Nature and Scope of
Thermodynamics—Illlustrated
for a Viscous, Heat-
conducting Fluid

This chapter defines thermodynamics of a single body as a field theory of
density, motion and temperature. It shows how equations of balance and
constitutive equations combine to give the field equations of thermodynamics
and describes the need for restrictive conditions on the constitutive functions.
Such conditions are material objectivity, the entropy principle and thermo-
dynamic stability which are formulated here and exploited for viscous, heat-
conducting fluids.

In this manner the chapter gives a first illustration of the procedure of
thermodynamics and provides an appreciation of obtainable results. The
chapter avoids subtleties concerning the introduction of the absolute tem-
perature and it contains a bare minimum of proofs and motivations. It relies
on some prior knowledge on the part of the reader, because the basic equations
of balance, and other tenets of thermodynamics are used before these have
been developed systematically in subsequent chapters.

1.1 Thermodynamic processes and the objectives of the
constitutive theory

1.1.1 Thermodynamic fields in fluids

Thermodynamics of fluids is a field theory with the primary objective of
determining the five fields of

density p(x,, )
velocity v;(x,, t) and (1.1)
(absolute) temperature T'(x,, t)

of all particles of the fluid and for all times.

The density p of a particle is a measure of its inertia and the temperature T
determines how hot the particle is.

In order to determine the thermodynamic fields (1) one needs field equations

1



2 Thermodynamics

and these are based on the equations of balance of mechanics and
thermodynamics.

1.1.2 Equations of balance

The equations of balance of mass, momentum and energy read, for regular
points of the fluid,

('1 (“. v,
,ﬁ_{_ L:O

ot Ox; ’

opv; 0

o tay ovi—t)=pf (1.2)
J

ople+5v?) 0
———
at 0x;

(ple+ 307 v;—t;;0,+4;) = pfivi+pr,

where f; is the specific body force and ris the specific absorption of radiation. f;
and r will usually be supposed to be given functions of x and ¢. The equations
(2) are also known as the equation of continuity, Newton’s equation of motion
and the first law of thermodynamics, in this order.

The equations of balance of mass, momentum and energy on a singular
surface with the unit normal n; and the normal speed v, read

Lo(vini—v,)1=0,
[pl‘j(l’,-n,-—g‘l)—lun;]=0. (13)
Lo +50%) (0imi— v, )= timw; +gimi 1=0,

provided that the surface does not have properties of its own, like surface
tension, etc. The square brackets denote the difference of the bracketed
quantity on the two sides of the surface.

While the equations of balance (2) are five in number, they cannot serve as
field equations for p, v; and T in the present form even if the body force and the
radiation supply are prescribed. Indeed, T does not occur in (2) and, instead,
new fields have appeared. viz. the stress t;;, the heat flux g; and the specific
internal energy e. Thus the system (2) is underdetermined, since it eontains far
less equations than unknown fields.

In this situation one must rely on experience, which indicates that stress,
heat flux and internal energy are dependent on the fields of density, velocity
and temperature in a materially dependent manner through constitutive
equations.

1.1.3 Constitutive equations

Experience with viscous, heat conductive fluids indicates that t;;, g; and ¢ at a
point x, and time ¢ depend on p, v; and T at that point and time and onv;and T
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in the immediate neighbourhood. Accordingly the constitutive equations for
such fluids have the general forms

ov, 0T
[U=('J l)svr‘s’I; k) )

Ox, 0x,
ov, T

qt:’zl p’vr”l-;(‘gx’ax ? (1'4)
A it

dv, 0T
e= elp, v, T,—,— |
ox, 0x,

s

The symbols ¢;;. 2; and e represent the constitutive functions.

The set of variables in (4) defines the class of viscous, heat-conducting fluids
for the purpose of the theory, and the form of the functions ¢, ., 2, and ¢ defines
a particular fluid within that class.

ijs

1.1.4 Thermodynamic processes

If the functions ¢;;, 2; and e were known explicitly for a particular fluid, we
would be able to eliminate t;;, ¢; and & between the equations of balance (2) and
the constitutive relations (4). Hence a system of five explicit field equations
appears for the determination of the five thermodynamic fields p, v; and T. A
solution of these field equations 1s called a thermodynamic process.

Thus, if indeed the functions #;;, 2, and ¢ were known for a fluid, the
objective of thermodynamics, viz. the determination of p, v; and T, would be
reached by finding solutions of a system of partial differential equations for
given initial and boundary values. This would be entirely a mathematical

problem—a difficult one, to be sure, but an explicit one.

1.1.5 The objectives of the constitutive theory and its tools

In reality the situation in thermodynamics is much worse than this. Indeed,
there is not a single fluid for which we do know the explicit forms of the
constitutive functions ¢;;, 2 and ¢ in the whole range of variables.

For this reason thermodynamicists are making every effort to get to know
the functions ¢;;, 2; and ¢ better. They attempt to restrict the generality of these
functions and, if possible, reduce them to a small number of coefficients whose
values could then be measured. Such efforts belong to the thermodynamic
constitutive theory, which is the main concern of this book.

The main tools of the constitutive theory for restricting the constitutive
functions are universal physical principles which have been abstracted from
long experience with bodies of arbitrary material. The most important ones
among such principles are the principle of material frame indifference, the
entropy principle and thermodynamic stability.

Also, sometimes the constitutive functions of a body are a priori known to



