THE IMA VOLUMES
IN MATHEMATICS

AND ITS APPLICATIONS N ' OLUME 14

J.R. Rice
Editor

- Mathematical Aspects of
Scientific Software

Springer-Verlag



J.R. Rice
Editor

Mathematical Aspects of
Scientific Software

With 46 Illustrations

Springer-Verlag
New York Berlin Heidelberg
London Paris Tokyo



J.R. Rice

Department of Computer Science
Purdue University

West Lafayette, IN 47907, USA

Mathematics Subject Classification (1980): 68Q20

Library of Congress Cataloging-in-Publication Data
Mathematical aspects of scientific software.

(The IMA volumes in mathematics and its
applications; v. 14)

Bibliography: p.

1. Computer software—Development. 2. Science—
Data processing. 1. Rice, John Richard. II. Series.
QA76.76.D47M366 1988 502'.85'53 88-3237

© 1988 by Springer-Verlag New York Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission
of the publisher (Springer-Verlag. 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts
in connection with reviews or scholarly analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc. in this publication even if the former are
not especially identified. is not to be taken as a sign that such names, as understood by the Trade Marks and
Merchandise Marks Act, may accordingly be used freely by anyone.

Permission to photocopy for internal or personal use, or the internal or personal use of specific clients, is granted
by Springer-Verlag New York Inc. for libraries registered with the Copyright Clearance Center (CCC). provided
that the base fee of $0.00 per copy, plus $0.20 per page is paid directly to CCC, 21 Congress Street, Salem.,
MA 01970, USA. Special requests should be addressed directly to Springer-Verlag New York, 175 Fifth Avenue,
New York, NY 10010, USA.

ISBN 0-387-96706-0/1988 $0.00 + 0.20.

Camera-ready text prepared by the editor.
Printed and bound by Edwards Brothers Inc., Ann Arbor, Michigan.
Printed in the United States of America.

987654321

ISBN 0-387-96706-0 Springer-Verlag New York Berlin Heidelberg
ISBN 3-540-96706-0 Springer-Verlag Berlin Heidelberg New York



The IMA Volumes
in Mathematics
and Its Applications

Volume 14

Series Editors
Hans Weinberger Willard Miller, Jr.



Institute for Mathematics and Its Applications
IMA

The Institute for Mathematics and Its Applications was established by a grant from
the National Science Foundation to the University of Minnesota in 1982. The IMA seeks to
encourage the development and study of fresh mathematical concepts and questions of con-
cern to the other sciences by bringing together mathematicians and scientists from diverse
fields in an atmosphere that will stimulate discussion and collaboration.

The IMA Volumes are intended to involve the broader scientific community in this
process.

Hans Weinberger, Director
Willard Miller, Jr., Associate Director

IMA Programs
1982-1983 Statistical and Continuum Approaches to Phase Transition
1983-1984 Mathematical Models for the Economics of Decentralized Resource Allocation
1984—1985 Continuum Physics and Partial Differential Equations
1985-1986 Stochastic Differential Equations and Their Applications
19861987 Scientific Computation
1987-1988 Applied Combinatorics
1988—-1989 Nonlinear Waves
1989-1990 Dynamical Systems and Their Applications

Springer Lecture Notes from the IMA

The Mathematics and Physics of Disordered Media
Editors: Barry Hughes and Barry Ninham
(Lecture Notes in Mathematics, Volume 1035, 1983)
Orienting Polvmers
Editor: J. L. Ericksen
(Lecture Notes in Mathematics, Volume 1063, 1984)

New Perspectives in Thermodynamics
Editor: James Serrin
(Springer-Verlag, 1986)
Models of Econoic Dynamics
Editor: Hugo Sonnenschein
(Lecture Notes In Economics, Volume 264, 1986)



The IMA Volumes in Mathematics and
Its Applications

Current Volumes:

Volume 1: Homogenization and Effective Moduli of Materials and Media
Editors: Jerry Ericksen, David Kinderlehrer, Robert Kohn, and J.-L. Lions
Volume 2: Oscillation Theory, Computation, and Methods of Compensated
Compactness
Editors: Constantine Dafermos, Jerry Ericksen, David Kinderlehrer, and
Marshall Slemrod
Volume 3: Metastability and Incompletely Posed Problems
Editors: Stuart Antman, Jerry Ericksen, David Kinderlehrer, and Ingo Miiller
Volume 4: Dynamical Problems in Continuum Physics
Editors: Jerry Bona, Constantine Dafermos, Jerry Ericksen, and David
Kinderlehrer
Volume 5: Theory and Application of Liquid Crystals
Editors: Jerry Erickson and David Kinderlehrer
Volume 6: Amorphous Polymers and Non-Newtonian Fluids
Editors: Constantine Dafermos, Jerry Ericksen, and David Kinderlehrer
Volume 7: Random Media
Editor: George Papanicolaou
Volume 8: Percolation Theory and Ergodic Theory of Infinite Particle Systems
Editor: Harry Kesten
Volume 9: Hydrodynamic Behavior and Interacting Particle Systems
Editor: George Papanicolaou
Volume 10: Stochastic Differential Systems, Stochastic Control Theory and
Applications
Editors: Wendell Fleming and Pierre-Louis Lions
Volume 11: Numerical Simulation in Oil Recovery
Editor: Mary Fanett Wheeler
Volume 12: Computational Fluid Dynamics and Reacting Gas Flows
Editors: Bjorn Engquist, Mitchell Luskin, and Andrew Majda
Volume 13: Numerical Algorithms for Modern Parallel Computer Architectures
Editor: Martin Schultz
Volume 14: Mathematical Aspects of Scientific Software
Editor: J.R. Rice



vi

Forthcoming Volumes:

1986—1987: Scientific Computation

The Modeling of Fractures, Heterogeneities, and Viscous Fingering in Flow in
Porous Media

Computational Fluid Dynamics and Reacting Gas Flows

Numerical Algorithms for Modern Parallel Computer Architectures

Atomic and Molecular Structure and Dynamics



FOREWORD

This IMA Volume in Mathematics and its Applications

MATHEMATICAL ASPECTS OF SCIENTIFIC SOFTWARE

is in part the proceedings of a workshop which was an integral part of the 1986-87 IMA
program on SCIENTIFIC COMPUTATION. We are grateful to the Scientific Committee:
Bjorn Engquist (Chairman), Roland Glowinski, Mitchell Luskin and Andrew Majda for
planning and implementing an exciting and stimulating year-long program. We especially
thank the Workshop Organizer, John R. Rice for organizing a workshop which brought
together many of the major figures in a variety of research fields connected with scientific
software for a fruitful exchange of ideas.

Willard Miller, Jr.

Hans Weinberger



PREFACE

Scientific software is the fuel that drives today’s computers to solve a vast range
of problems. Huge efforts are being put into developing new software, new systems
and new algorithms for scientific problem solving. The ramifications of this effort
echo throughout science and, in particular, into mathematics. This book explores
how scientific software impacts the structure of mathematics, how it creates new
subfields and how new classes of mathematical problems arise.

The focus is on five topics where the impact is currently being felt and where
important new challenges for mathematics exist. These topics are the new subfields
of parallel and geometric computations, the emergence of symbolic computation sys-
tems into “general” use, the potential emergence of new, high-level mathematical
systems, and the crucial question of how to measure the performance of mathemat-
ical problem solving tools.

This workshop brought together research workers from the borders between
mathematics and computer science, people who were able to see and discuss the in-
teractions between mathematics and its applications. The editor greatly appreciates
the efforts made by the authors and other participants in the workshop. Special
thanks are due to Carl de Boor, Clarence Lehman, Bradley Lucier and Richard
McGehee who gave stimulating and insightful panel presentations on the nature
and needs for high level mathematical systems.



CONTENTS

oS = (o o E R ix

PrefiiCe «onocssmes o 6 wmm s s oiem 55 5wl s /67 5 6 G006 6§ G818 6 8 G880 wone s ¥ wowe x o o wiiaie s $iSi6 88 bie xi

Mathematical Aspects of Scientific Software ................ .. oiiiiiiiiiiin 1
John R. Rice

The Mapping Problem in Parallel Computation ............ccoiviiiiiinnnn.. 41

Francine Berman

Applications of Grobner Bases in Non-linear
Computational Geometry . .......ouiiiiiiiiiiiiiiiiii it eeeananns 59
Bruno Buchberger

Geometry in Design: The Bézier Method ............ccvviiiiiiiiiiinninnnns. 89
Gerald Farin

Algebraic CUIVES .. ..uiutittit et ittt e a e e e en e ea e naeaiaenanaans 101
Christoph M. Hoffmann

Performance of Scientific Software............c.coiiiiiiiiiiiiii i .123

E.N. Houstis, J.R. Rice, C.C. Christara and E.A. Vavalis

Scratchpad II: An Abstract Datatype System for
Mathematical Computation ...........c.eiuiiiiiiiiinnriirieeennennans 157
Richard D. Jenks, Robert S. Sutor and Stephen M. Watt

Data Parallel Programming and Basic Linear Algebra
SUBrOUtINeES . ...ttt e e e 183
S. Lennart Johnsson

Integrating Symbolic, Numeric and
Graphics Computing Techniques .........cuiuiiiiiie e iieiiiinennneenss 197
Paul S. Wang



MATHEMATICAL ASPECTS OF SCIENTIFIC SOFTWARE

JOHN R. RICE*
Department of Computer Science
Purdue University
West Lafayette, Indiana 47907

Abstract

The goal is to survey the impact of scientific software on mathematics. Three types
of impacts are identified and several topics from each are discussed in some depth. First
is the impact on the structure of mathematics through its role as the scientific tool for
problem solving. Scientific software leads to new assessments of what algorithms are,
how well they work, and what a solution really is. Second is the initiation of new
mathematical endeavors. Numerical computation is already very widely known, we dis-
cuss the important future roles of symbolic and geometric computation. Finally, there
are particular mathematical problems that arise from scientific software. Examples dis-
cussed include round-off errors and the validation of computations, mapping problems
and algorithms into machines, and adaptive methods. There is considerable discussion of
the shortcommings of mathematics in providing an adequate model for the scientific
analysis of scientific software.

1. The Impact of Scientific Software on Mathematics

The goal of this paper is to survey the impact of scientific software on mathematics.

Three areas are identified:

1) The effect on the structure of mathematics, on what mathematicians do and
how they view their activities,
2) New mathematical endeavors that arise, new specialities or subspecialities of

mathematics that may be created,

*This work supported in part by the Air Force Office of Scientific Research grant 84-0385.



3) Mathematical problems that arise, difficult mathematical problems or groups
of problems arise from efforts to understand certain methods or phenomena of

scientific software.

About 15 topics are presented which illustrate these impacts. No attempt has been made
to be encyclopedic, the choices are those that appeal to the author. This introductory sec-
tion is a summary of the survey, about a dozen of the topics are discussed in more depth
in the later sections of this paper and only mentioned here. A few topics not discussed

later are included here with a few remarks.

In considering the structure of mathematics, it is important to realize that not only
does mathematics grow but that it also changes nature. Large subfields die out aid not
just because all the problems are solved or questions answered. There subfields become
irrelevant to new directions that mathematics take. An example of this exists in scientific
computation, namely making tables of mathematical functions. This endeavor started
almost in the antiquity of mathematics and grew until there were a large number of prac-
titioners. Volumes and volumes of tables were prepared and the methodology of creat-
ing, checking and making them easy to use became quite sophisticated. This endeavor is
now in a steep decline because computers and scientific software have made it easier and

more reliable to compute values from ““first principles’’ than to look them up in tables.

Scientific software will lead mathematics to focus again more heavily on problem
solving and algorithms. We need to analyze the intrinsic nature of problems, how hard
they are to solve and the strengths of classes of algorithms. We need to examine again
what it means to solve a problem, a step that will show many previous ‘‘solutions’’ to be

of little value.

We need to examine again what it means to prove a result, and what techniques are
reliable. Some groups in computer science have a substantially different view of proof
then modern mathematical practice. They view proofs much more formally, somewhat
reminiscent of Russell and Whitehead’s Principia Mathematica. If computer programs
are going to prove theorems, how does one prove the programs themselves are correct?
For a delightful and insightful analysis of the pitfalls here, see [Davis, 1972]. I believe
that we have learned several important things about proofs and scientific software. First,
scientific software is not amenable to proofs as a whole because it contains many heuris-
tics (i.e., algorithm fragments for which there is no underlying formal model, we just

hope they work). Second, it is very difficult, often impossible, to say what scientific



software is supposed to do. Finally, the computing requirements for this approach are
truly enormous.

We discuss the impact on mathematics of the creation and widespread use of
mathematical systems. This development is now overdue and will have an enormous
impact on education and practice of mathematics. It is plausible that one can automate
large parts (the algorithmic parts) of mathematics from the middle elementary years to
the middle undergraduate years. The results will be much more reliable abilities, less
cost, more power for problem solving and more time to learn the mysteries of problem

solving rather than the rote.

The largest and most visible new mathematical endeavor resulting from scientific
software is that of numerical computarion. It has a lot of structure and activity. The
principle components are numerical analysis, a large subfield of mathematics and com-
puter science, mathematical software, a smaller subfield of computer science, a part of
applied mathematics, and computational analysis, a huge subfield of science and
engineering. This endeavor has not yet had a large impact on most of mathematics.
Perhaps this is because mathematics has turned away from problem solving and has been
content to let other disciplines appropriate this endeavor. As the attention of mathemat-

ics is turned toward problem solving, interest in this area will rise substantially.

Sections 6 to 8 discuss the newer endeavors of symbolic computation and geometric
computation. These are currently much smaller than numerical computation but may
have a more immediate impact on mathematics because they are closer to currently
active areas. Geometric computation is still quite immature and offers a host of chal-

lenges for mathematics.

Perhaps the best known problem area arising from scientific software is that of
round-off error analysis. In 1948 John von Newmann and Herbert Goldstine pursued the
idea of following the effect of individual errors and bounding the results. This is very
tedious and overall this approach is a failure. A second and more subtle idea is to esti-
mate the change in the problem data so the computed result is exact. This is often very
practical and it gives very useful information, once one accepts that a realistic estimate of
the error due to round-off is not going to be obtained. The third and most widely used
idea is to do all computations with much higher precision than is thought to be required.
One can even use exact arithmetic. This approach is quite, but not extremely, reliable. It
is also expensive. The final approach has been to introduce condition numbers, these are

essentially norms of the Frechet derivative of the solution with respect to the data. Note



that these do not take into account actual round-off errors but rather estimate the uncer-

tainty of the solution in terms of the uncertainty of the problem data.

Round-off error analysis is somewhat unpopular because it is so frustrating and
many people hope they can succeed in ignoring it. That is the real attraction of buying
computers with long (e.g., 64 bit) word lengths, one gets high precision and, hopefully,
freedom from worrying about round-off. Unfortunately there is a general lack of under-
standing of the nature of uncertainty effects in problem solving. There is confusion
about the difference between the condition of a problem and that of an algorithm to solve
it. If a problem is badly conditioned (the condition number is large) then nothing can be

done about it while a badly conditioned algorithm might be replaced by a better one.

Condition numbers are sometimes misleading in that the estimates derived are
grossly pessimistic. In my own work of solving elliptic PDEs, I see condition numbers
like 10°, 10'° or 10" and yet observe almost no round-off effects. This leads to more
confusion which is further compounded by the fact that scaling problems (simply chang-
ing the units of measurement) can have dramatic effects on round-off. This phenomena

is poorly understood and difficult to analyze.

The problem of round-off error is just one aspect of a more general question: How
do you know the computed results are correct? The mathematical results here are much
less than satisfactory. Most problems addressed by scientific software are unsolvable
within the framework of current mathematics. For example, given a program to compute
integrals numerically, it is easy to construct a function (with as many derivatives as one
wants) where the result is as inaccurate as one wants. Most theorems that apply to prove
correctness of computed results have unverifiable hypotheses. And many theorems have
hypotheses that are obviously violated in common applications. Most scientific software
contains several heuristic code fragments. Indeed, it is usually not possible to give a pre-

cise mathematical statement of what the software is supposed to do.

The search for techniques to give better confidence in computed results is still on.
A posteriori techniques still are not fully explored (it is easy to tell if x, solves
f(x)=0). Computing multiple solutions efficiently is another technique that holds
promise and which uses the old idea: Solve the problem 3 times (or k times) and with 3
methods and compare the results. The application of several techniques is usually
required to achieve really high confidence in correctness. A rule of thumb is that it costs

as much to verify the correctness of a computed result as to compute it in the first place.



Four other topics are discussed in Sections 9 to 12: 1) mapping problems and algo-
rithms into the new parallel machines, 2) the analysis of adaptive algorithms, 3) how
well mathematics models real problems, can one find theorems that are useful in assess-
ing real computations, 4) the role mathematics plays in the experimental performance
evaluation of scientific software. The final topic is particularly frustrating. Much like the
weather, everyone talks about it but few do anything about it. One frequently hears state-
ments ‘‘method x is the best way to solve problem y’’ which are in fact, little more than
conjectures. Scientific and systematic performance evaluation is a lot of work, much of it
is tedious and the work is not highly regarded by one’s peers. No wonder that people
prefer to do other things. We have the puzzling situation where research managers and
funding agencies are always looking for ‘‘better’’ methods and yet they are uninterested

in supporting work to measure which methods are actually good or bad.

2. Problem Solving and Algorithms

Historically, mathematics has arisen from the need to solve problems. It was recog-
nized about a thousand years ago that one can codify the steps needed to solve some
problems. These steps can be written down and someone can be told “‘If you have this
kind of problem, then follow these steps and you will have the solution.’’ This idea
matured into two of the most fundmental concepts inn mathematics: models and algo-
rithms. Models arise from the need to make precise the phrase ‘this kind of problem’’
and algorithms make precise the phrase ‘‘follow these steps’’. Recall that, intuitively
speaking, a model is an abstract system using axioms, assumptions and definitions which
represents (well, one hopes) a real would system. An algorithm is a set of precise
instructions to operate an abstract machine.

Mathematics has evolved through several well identified levels of problem solving.
The lowest several of these are presented below along with typical problems and solu-

tions.



Arithmetic
Problem Solution
What is 2 + 2? 4
What is 7 x 8? 56
What is 1327/83? 15.9879518...
What is 3/2 x (1/8 — 3/5 + 1/12) / (37/8)? 47/310
What is V86? 9.273618...

Notes. There are many algorithms including memorization (table look-up in computer
science terms) taught in school. It is significant that some studies suggest that about 80%
of the entering college freshman cannot do long division, i.e., do not know an algorithm
for computing 1327/83 as a decimal number. I would guess that a greater percentage of

professional mathematicians and scientists cannot take square roots.

Algebra
Problem Solution
Whatis 3x + 2y —x —3y? 2x -y
What is 3x + 2y) X (x +3y)?  3x%+ 1lxy + 6y?
Solve3x?-x —-7=0 x = 1.703...
Solvex* — 7x% +3x — 110 =0 x =8.251...

Note. Very few mathematicians know the algorithms for all of these problems.

Calculus

Problem Solution
What is the derivative of e*? e*
What is the integral of cot x? log|sinx | + ¢ ”

. . o (=1)x*
What is the integral of (cos x )/ x? lo +c - Clyx

g ( )/ x glx| +¢c Ei 220!

What is the area under the curve T
y = /(\x (1 + x)) for x in [0,00]? o

. . . 2 = (=1)x%
What is the series expansion of erf (x) _— Y

W 5 @i+ 1!

Notes. The algorithms learned in calculus are rarely explicitly stated or taught. Prob-
lems are often called ‘‘solved’’ when one symbolic expression symbolic expression (say,
a function or integral) is shown equal to another symbolic expression (say, an infinite
series or product), neither of which can be computed exactly (even assuming one can do

exact arithmetic with real numbers).



Beyond these three levels there are linear algebra, ordinary differential equations,
combinatorics and others.

Even though the essense of mathematics is model construction and problem solving,
a large percentage of the teaching effort is devoted to learning algorithms (often with nei-
ther the teacher or student being aware of this). I believe that it is much more important
to learn how to use knowledge than to learn knowledge. In mathematical terms, it is

more important to learn how to use algorithms than to memorize them.

The current situation is as follows:

(a) Enormous effort is invested in teaching people algorithms.
(b) People forget most of the algorithms they learn.

(c) Many algorithms of arithmetic, algebra, calculus, linear algebra, etc., can be imple-

mented as scientific software and run on cheap machines.

(d) Many educators who expound the virtues of learning algorithms routinely use con-

cepts, processes and models for which they do not know any relevent algorithms.

This situation is unstable and portends great changes in the educational system. This
change will be slow but profound. Almost twenty years ago a compute program could
make a grade of B on some calculus exams at MIT. Surely we cannot continue this when

the cost of machines and software to do algorithms is becoming negligible.

It is fascinating to contemplate what the first two years of college mathematics
would be if it were based on a mathematical system which includes the standard (and not
so standard) algorithms of arithmetic, algebra, calculus, linear algebra, numerical
analysis, geometry and combinatorics. The National Academy of Sciences is sponsoring

a new study Calculus for a New Century, perhaps it will make some steps of change.

3. How Hard are Problems to Solve?

Since problem solving is one focus of mathematics, a central question is to deter-
mine just how hard various problems are to solve. Being hard to solve is measured by
how much computation an algorithm must do, not by how hard it is to discover the algo-

rithm. The problem of multiplying two integers, compute a X b, illustrates the idea.



