Information Structures

A UNIFORM APPROACH USING PASCAL

B. J. Lings

Information Structures

A UNIFORM APPROACH USING PASCAL

B. J. Lings -

Department of Computer Science
University of Exeter

LONDON NEW YORK

Chapman and Hall

First published in 1986 by

Chapman and Hall Ltd

11 New Fetter Lane, London EC4P 4EE
Published in the USA by

Chapman and Hall

29 West 35th Street, New York, NY 10001

© 1936 B. |. Lings

Printed in Great Britain at the |
University Press, Cambridge '

ISBN 0 412 26490 0 (hardback)
ISBN 0 412 26500 1 (paperback)

This title is available in both hardbound and paperback editions. The
paperback edition is sold subject to the condition that it shall not, by
way of trade or otherwise, be lent, resold, hired out, or otherwise
circulated without the publishet’s prior consent in any form of binding
or cover other than that in which it is published and without a similar
condition including this condition being imposed on the subsgquent
purchaser.

All rights reserved. No part of this book may be reprinted, or
reproduced or utilized in any form or by any electronic, mechanical or
other means, now known or hereafter invented, including photo-
copying and recording, or in any information storage and retrieval
system, without permission in writing from the publisher.

British Library Cataloguing in Publication Data

Lings, B. J.
Information structures: a uniform approach
using Pascal.—(Chapman and Hall computing)
1. Data structures (Computer science)
I. Title)
001.6442 QA76.9.D35

ISBN 0-412-26490-0
ISBN 0-412-26500-1 (Pbk.)

Library of Congress Cataloging in Publication Data

Lings, B. J., 1950-

Information structures.

Bibliography: p.

Includes index.

1. Data structures (Computer science) 2. PASCAL
(Computer program language) 1. Title.
QA76.9.D35L56 1986 001.64'2 85-4209

ISBN 0-412-26490-0
ISBN 0-412-26500-1 (Pbk.)

Prefoce

The study of computer science has become well-enough established for
there to be a certain uniformity across the basic course offerings of a
wide range of universities and colleges. This book covers those aspects
of a computer science course normally referred to as ‘Information
Structures’ or ‘Data Structures’.

The book is aimed at students, typically in their first and second years
of study, who need a clear presentation of course material in a cohesive
framework, which puts the wealth of information about data structures
into context. The emphasis is placed on demonstrating the development
of ideas and techniques, rather than simply on presenting results.

The approach taken is that of data abstraction, with emphasis on the
practical aspects but including discussion, where appropriate, of the
underlying theory. The vehicle used for developing examples, of which
there is a wealth, is the language Pascal. Although Pascal does not
explicitly support data abstraction, it is still the best language readily
available for teaching purposes.

The techniques of information hiding; specification, data type
realizations and tuning are all covered in a homogeneous structure. The
book explores these techniques as well as the construction and analysis
of the major data structures. In this way, new material can be quickly
fitted into its appropriate place in the materials available to system
developers.

The book is divided into three parts. Part One is suitable for students
entering an introductory course in information structures after already
being exposed to the language Pascal. As an informal approach to
data-abstraction theory and practice, it is intended to be self-contained.
Part Two introduces the idea of parametrized data types and looks at
three which are fundamental in computer science: set, tree and graph.
The material is conventional, but the presentation once again stresses
the disciplined approach of abstraction techniques. Part Three covers
material often placed under the subheading ‘Sorting and Searching’. It is
a study of a simple associative data type.

My thanks are due to my wife, Pam, who has proof-read the whole
typescript in its earliest stages, and to Marlene Teague, whose major
efforts transformed my manuscript into machine-readable text.

Contents

Pr-face

PART ONE: THE CONCEPT OF TYPE

1

The Pascal type concept

1.1 Introduction

1.2 What is a type?

1.3 The basic Pascal types

1.4 The advantages of typed languages

User-defined types

2.1 Why user-defined types?
22 An example

2.3 Definitions in Pascal

Data structures: the structured types of Pascal
3.1 Type RECORD

3.2 Type SET

3.3 Type sequence

3.4 Type ring

3.5 Type heap

3.6 General remarks

Type sequence: realizing user-defined structured types

4.1 Realizations

4.2 Some’important restrictions
4.3 Type hierarchies

4.4 Type sequence revisited

More formal aspects

5.1 Choosing a realization

5.2 Formal specification of types

5.3 Proving the correctness of a realization
5.4 Long-lived programs: data independence

pag " 1x

N O b= W W

45
45
50

-

71
73
81
S1
39

96

6

PART TWO: PARAMETRIZE[)WDATA STRUCTURES
7 Parametrized data structures: fatroductory comments

-

10

11

Basic structured types: realizations
6.1 Array
6.2 Heap

7.1 Introduction to parametrizéd types
7.2 Some concepts from graph theory

Type tree

8.1 Binary tree

8.2 N-ary tree

8.3 ‘Realizations

8.4 Heap tree

8.5 An example: file compression

Type set revisited
9.1 Realizations
9.2 Using sets

Type graph

10.1 Realizations

Type Hst

11.1 Dynamic realization

11.2 Shared sublists
11.3 Garbage collection

PART THREE:

AN ASSOCIATIVE DATA STRUCTURE:. table

12

13

14

Type table -
12.1 Static representation
12.2 Dynamic representation

Sorting techniques
13.1 Static representation
13.2 Dynamic representation

Further realizations
14.1 Binary search trees
14.2 B-trees

14.3 Hash tables

101
101
113

123
123
124

127
130
136
138
159
162

171
172
176

179
179

189
190
191
192

199
200
204

210
217

225
242
256

CONTENTS

15 Table as a realization for other types 275
15.1 Sparse arrays 275
15.2 Sets 275
Appendix A 277
Exercises 277
Appendix B 285
Selected bibiiography ' 285

Index » 287

PART ONE

The concept of type

1
The Pascal type concept

1.1 INTRQ‘Du;kaoN

This book 15 dlkabout data types. It is assumed tilat you have dready
had an exposuté to the language* PasScal'and thag;‘ﬂ\e basi notitgy-o
type is therefore not new to gloh "W)\gt will probably be new i
approach taken to studying Such types %ﬁ& be, looking 4 he -
fundamental concepts mvolved mmmg“ﬁm we‘ can ‘_“ o
understanding in stracfufing our pm;ams "

Programs are composed, as far as we' are conceméd hem of‘two mﬂt
components: -

(i) An algonthm

(i) A set of data iﬁemq each item bemg assoczated with a data type.,
These represent the Mg play’ at any given moment during the,
execytion of the algosithm. Only ‘appropriate! operahons may be
performed on thesé-data objects by the algorithm. As an example,
addition is an appmpmte on on two objects each associated
with type integer. %o o

You should already have some exposulre to algcnthms and you may-
even have studied the theory -of ithms to some extent. Only the
notion of an algorithm is assumed asf&i)mreqmsxte to reading this book:
the Bubhography lists some suggested texts for this purpose. |

Our intention is to etudy practical aspects ¢ of component (ii) abowe and
to present material on data items in a manner consistent with
approaches snfggested by current research and (to a lesser extent at the
present time) current pracuce .

The scope ofy the &ook is that portion of a computer dgierice
undergraduate oz mrmally entitled ‘Data Structures’ or m‘&? v
tion Structures’; It i ¥ itable as a text for. such courses. The ‘
taken s that of traction, emphasizing the advantages and
techniques" e “3h the pnndples of :data independence and
information hxdmg The book i split into three parts.

Part One is suitable for students entering an introductery course in

e S -7‘<_ RN

“a

THE CONCEPT OF TYPE

information structures after already being exposed to the language
Pascal. It covers the major concepts of data-abstraction techniques, and
discusses basic data types (integer, boolean, char), simple user-defined
data types and the ‘structured’ types selated to those provided by
Pascal. As an informal introduction % data-abstraction theory and
practice it is intended to be self-contained.

Part Two introduces the idea of parametrized data types and looks at
four such information structures which are fundamental in computer
science: set, tree, graph and list. Once again the basic material is
conventional: a study of these data types and a comparison of the
various implementations (we will use the term realizations for reasons
that will become clear) open to us. The presentation, however, will once
again stress the approach of data abstraction. As an example, the tenth

_chapter of the book uses type graph in order to demonstrate how to
develop programs from abstract algorithms, in such a way as to improve
their longevity and reliability.

Part Three covers material often placed under the subheading ‘Sort-
ing and Searching’. It is a study of a simple associative data type.
Associative (or key) retrieval is a s.mple abstract notion. Its realizations
can be complex and are very varied.

One aspect of this study which will pervade all sections is the effect
usage has on choosing an optimum realization for a data type. Each
different realization will, in general, favour a different subset of its
defined operations. It is important to bear this in mind when reading the
book, and to consciously assess each suggested realization by determin-
ing its behaviour with each operation.

1.2 WHAT IS A TYPE?

1.2.1 A type as operations + domain

You will have come across the notion of a data type in Pascal. Pascal is a
strongly typed language, by which we mean a language in which every
defined data item is associated with a specified data type. For example,
in introducing two variables SUBTOTAL and TOTAL we may have a
definition of the form

var SUBTOTAL, TOTAL:INTEGER

at the head of a Pascal program block. Let us recap on the implications
such a statememt has in a Pascal program.

(i) It identifies those values which SUBTOTAL and TOTAL may tal
For example

TOTAL :=6

THE PASCAL TYPE CONCEPT
is perfectly legal, whereas
SUBTOTAL := TRUE

is not. The set of legal values associated with a type is called its
domain. The number of elements in a domain is called the cardinality
of the domain. The cardinality of the boolean domain is 2, that of
the Pascal character domain 128 and so on.

(ii) It is a message to the compiler concerning the way in -which
SUBTOTAL and TOTAL are to be represented. In this case the
compiler may, perhaps, deduce that orie word of mensiory should be
allocated to each data item, and that valyes will be stored in
twos-complement binary representation, We will see later that this
‘implication’ is in fact of a diffesent nature to (i) and (iii).

(iii) It is a message to the compiler concerning the way in which
SUBTOTAL and TOTAL are to be used. Each of the pre-defined object
types has associated with it a set of operations. In the case of integer
these will include +,—, MOD. All manipulations of integers must
(ultimately) be specified in terms of these operations.

Therefore we have as a fact in Pascal that
SUBTOTAL + TOTAL

is a meaningful expression whose value is obtained by adding together
the current values of SUBTOTAL and TOTAL, whereas

SUBTOTAL AND TOTAL

is not a meaningful expression (it is in some ;"eakly typed languages)
and is therefore defined to be ‘illegal’. Such a stat¢ment will be identified
as erroneous by the compiler.

We note three things about the legal expression

SUBTOTAL + TOTAL ®

() It has a parallel in mathematical integers. By looking at the
mathematics of the expression and the values of the two variables we
can deduce the value that the expression should have (and will
normally have - see (ii)). In mathematics type integer can be specified
starting from Peano’s axioms. Later we will attempt to specify all
types that we use in a program, many of them informally at this
stage. To specify a type is to give a method, independent of the
given system, by which we can establish the expected result of each
operation performed. Normally we try to be formal in our
specifications (mathematical) because the more rigorous we are the
more confident we can be of our pronouncements.

(ii) The parallel with mathematical integers is not complete. Peano’s -

THE CONCEPT OF TYPE

axioms are for integers with an infinite.domain. On the other hand,
computers are finite. The immediate impact of this is that (+) may
yield a perfectly ‘normal’ value when calculated using our specifica-

.fion, but nfay:cause- overflow on a typical machine when, for
examplg; -and TOTAL are both very large integers. We
note the problem shere, but shall Mot attempt to develop these
thoughts at this stage.

(i) Becoming les$ esoteric, expression (#) tells the compiler what code
to generate. The compiler knows that SUBTOTAL and TOTAL are
both integers;. s0: that + refyrs to integer arithmetic. The ‘nteger
additior’ instrijction from the machine instruction set may therefore
be caied for. THs instrucijon is an implementation of the integer ‘ +’

n. Eachaﬁihe defined operations for a type must have such
lementation defined.

Noné of this is new: i#t is ' merely documenting what we already know
about typés from out"Pascal experience. Much of it we may never have
consciously formulated: it will have remained implicit in our own model
of what our programs are actually about. :

Let us summarize, then, what we mean by a (Pascal) type: i.

® A type specifies a domain: a set of legal values. 2

® A type specifies a set of legal operations on those values and theremﬂw
of applying these operations (the semantics). F

® A type prescribes.a representation for values from its domam this..
representation is chosen: Py the compiler writer. An example wauld ™™
be the representagdn of integer values by twos-complemeht binary""
values.

® A type prescribes an implementation for each operahon from is
operation set: tt.cse implementations are also chosen by the compiler
writer, who in turn is constrained by the architecture of his machine.

We chose our words carefully above, because whereas the domain
and operation set for, say, an integer are fixed for all Pascal implementa-
tio: 5 (and for those of most o her languages) the repreWon of
integers and the implementation of integer operations varies widély and
is particularly dependent on the hardware of a system. Obviously. the
implementation of an operation is intimately bound up with the
representation of its-values; change this representation and you must
change the implementation.

Before we leave this section, note the correspondence which will form
the basis of an approach to building our own data types. If we look at the
summary it is not hard to see that, for each data type

® Operations are specified on values from the domain.

* 'THE PASCAL TYPE CONCEPT

® Values from the domain are gwen Q-reprcsentahon whnch agsocmtes
each value from the domain with &:valué in a dlﬁerent damaih" (for
example, that” of twos-complement” bmary values in the;aase of
integer). ¥

® Operations are implemented by defining whxch opeeahOns are to-be
performed on values from the representation domain in order to
achieve the desired (specified) result (for examp&e, Logical Shift to
achieve multiplication by 2). |

In other words, there is an isomorphis defined between a type and its
realization (the mp&esentat:on and' lmplemenmtxon combined).

1.2.2 A type as 'opontioml- only N
Itis a fact that the congept of a data item (a variable in Pascal) to denote a
data value is not strictly necessary, and, we could concern ourselves
solely with operations. A variable is only ‘visible’ because operaticns are
available which make it so, for example

WRITE(J)

In this case] is simply a shorthand notation for the expressmq from
which its value was constructed: say

(see Peano’s mnogns) In this .appllcatwe ;wtatlon we can see that data
items are indeed unnecessary, and can aIWays be replaced by functional
expressions. In spatticular, our WRITE(J) can be replaced by

WHRITE (MULTIPLY (SUCCESSOR (SUCCISSOR (ZERO)), SUCCESSOR
(SUCCESSOR (ZERO))))

As we are dealing with g Pascal environment, presenting practical as
well as theoretical aspects, mthat environment, we will retain the notion
of a data item. If you are interested in the * pure approach you will find
references in the Bxbhography

1.2.3 Delning type maea

For us, MJ mteger is realized by choosing a more bagic t}pé1o
represent ¢ bx"deﬁnmg a gorrespondence (Fig. 1.1). »

(i) Betwén mﬁgérg and values from the representation domain.

¥

THE CONCEPT OF TYPE

integer operations

Specification l integer domain j type integer

Y

Fwos -complement operations

Realization twos - complement domaﬂ type twos-complament

Figure 1.1 Type INTEGER,

(i) Between integer operations and operations on the representation

domain.

Examples

INTEGER TWOS-COMPLEMENT (16 bit)

Value: — 32768 1000000000000000
Value: 0 0000000000000000
Operation: + IADD (integer add)
Operation: DIv IDIV: return quotient
Operation: MOD IDIV: return remainder

We now introduce a notation for explicitly expressing all the facts
contained in this correspondence. Such a definition is implicit in every
Pascal program using integers: it will become more useful as and when
we introduce our own data types. For simplicity the specification given
as Fig. 1.2 is not complete.

We make the following observations about it:

(i) Under operations we give the form of each operation: +acts on two
integers to give a result which is an integer.

(i) The only operations allowed on the right of ‘- in an implementa-
tion are those defined for the type in the representation or the type in
question. Here, we are at the level of the Assembly language. If we
were not, then a specification and realization for binary twos-
complement would have to appear as well.

That concludes our section on ‘What is a type?. If you are more
confused than when you started it is because we are having to force
many issues into the consciousness which have hitherto, quite rightly,

THE PASCAL TYPE CONCEPT

Specification for INTEGER
Domain
—-32768. ..32767
Operations
+,—,*, DIV, MOD : — (INTEGER, INTEGER): INTEGER
<,<=,=,>=,> :-— (INTEGER, INTEGER): BOOLEAN
= : — (INTEGER, INTEGER)
Semantics

Based on Peano’s axioms, suitably modified because of
~ finite domain
Realization of INTEGER
Répresentation
Binary twos-complement
Implementation
+ (X, Y) —load X

iadd Y, etc.

Figure 1.2 Type INTEGER.

been left covered by ‘black boxes’. As always, opening a black box leads
to more complexity in our model of what a program actually means, and
an increase in the jargon so necessary to allow brevity in future
developments. As we move on you will see that the benefits of opening
this box far outweigh the initial cost, so the exercise is well worth while.

It will be time well spent if you study this section until its concepts
and technical terms are absorbed into your modelling kit. Once this has
been done the rest of the book will make far easier reading.

Technical terms

e Strongly typed.

© Domain. .
¢ Cardinality.

Specification.

Realization.

Representation.

Implementation.

1.3 THE BASIC PASCAL TYPES .

In Pascal, as in all strongly typed languages, a number of data types are
both specified and realized implicitly. These can be used by a
programmer with no further definition.

9

10

THE CONCE?T OF TYPE

On the posiive stde th&*means that the programmer is saved the
problem of delving into détaks of ¢he machine architecture in srder to
devise a realization for these very fundamental and frequenﬂv used
types. Togeh\er they form the blocks from which the user's own types
can be built.

On the negative side, 1t means that the user must accept whichever
realization kas been chasen by the compiler writer far these types. The
chosen realization will Almost gertainly be a compromise which may be
far from optimhum for the particular circumstances which an algonthm
dictates. For example, Mntegers may be used primarily in input and
output instractions; multiplication by 2 may use the general multiply
instruction rather than a shift.

In Pascal the basic types mclude

INTEGER
BOOLEAN
CHAR
REAL

We say that these types are defined ‘in the language prelude’, that is, all
programs cah be written as if their specifications and realizations form a
part of the code.

We haye already seen what the language prexude could look like for
type mttget. Of course, the notation we used is not in the Pascal
language avid 30 we have to qdql: it when we define our own types. We

., return 1 %hsue in Chaptes & Ea' the nt; kowever, we keep the

notation MM at anothey

AR

The figst' thing we notice ig m unijke NI'EGER has no
universal specﬁmhon Indeed, it t iugua@s type CHAR has its
domain spéfied in the languag&ptélude by listing all elements in the
domain. The%ndmahtv of CHAR in Pascal is 128: As with INTEGER the
domain, is tqially ordered. Each value in the domain has a unique
predecessor {except one which we call ‘low’) and each value in the
domain has a unique successor (except one which we cali ‘high’). The
compariSon; operations (<, =, >, etc.) are therefore applicable. Two
further pperations are applicable, as indeed they are for type INTEGER
and afily other ordered type These are the successer and predecessor
oper. . We left them out of the discussion of type. IﬂﬁQER purely to
simpli ihe exposition. We introduce them shortly, but first a remark or
notation. '

The operations listed in Fig. 1.2 for INTEGER are all binary operators
(that is they all operate on two INTEGER values). We are used to writing
expressions in infix notation, so that notation is adopted by Pascal.
However, there is nothing particularly special about the notation. In fact

’

