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Preface

This book presents the theory and several applications of the decoupling princi-
ple, which provides a general approach for handling complex problems involving
dependent variables. Its main tools consist of inequalities used for breaking (de-
coupling) the dependence structure in a broad class of problems by introducing
enough independence so that they can be analyzed by means of standard tools
from the theory of independent random variables.

Since decoupling reduces problems on dependent variables to problems on
related (conditionally) independent variables, we begin with the presentation
of a series of results on sums of independent random variables and (infinite-
dimensional) vectors, which will be useful for analyzing the decoupled problems
and which at the same time are tools in developing the decoupling inequalities.
These include several recent definitive results, such as an extension of Lévy’s
maximal inequalities to independent and identically distributed but not neces-
sarily symmetric random vectors, the Khinchin—Kahane inequality (Khinchin for
random vectors) with best constants, and sharp decompositions of the L, norm
of a sum of independent random variables into functions that depend on their
marginals only. A consequence of the latter consists of the first decoupling result
we present, namely, comparing the L, norms of sums of arbitrary positive random
variables or of martingale differences with the L, norms of sums of independent
random variables with the same (one-dimensional) marginal distributions. With a
few subjects, such as Hoffmann-Jgrgensen’s inequality, we compromise between
sharpness and expediency and take a middle, practical road.
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Concerning decoupling itself, we choose to introduce it by developing in great
detail two of the main areas where it has been most successfully applied. These
are 1) randomly stopped sums of independent random variables and processes
with independent increments and 2) U-statistics and U-processes. There are two
main reasons for starting with these “particular cases” rather than with the general
theory: on the one hand, these examples motivate very clearly the general theory
and, on the other hand, the general theory does not and cannot imply the strongest
results in these two important areas.

The effect of decoupling on randomly stopped sums of independent random
variables (and processes with independent increments) consists in creating inde-
pendence between the stopping time and the variables so that the stopped sum can
be treated conditionally as a sum of a fixed number of independent random vari-
ables. This is done for Banach space valued variables (sums) and processes. These
results constitute striking generalizations of Wald’s equation. A special case of the
result on stopped processes consists of an extension of the Burkholder—-Gundy in-
equality for randomly stopped Brownian motion to Banach valued processes with
independent increments. An advantage of having these results in Banach spaces
is that they apply also to some real valued processes that do not have independent
increments, such as Bessel processes, by realizing them as functionals of Banach
valued independent increments processes. Another advantage is that the constants
involved in the approximations are independent of dimension. The decoupling
results are then applied to the study of the first passage time for the absolute value
(or the norm, in the Banach case) of a process with independent increments by
developing a natural, yet surprising connection with boundary crossing by non-
random functions, with applications that highlight the relevance of working in a
Banach setting.

An important area of applications of the decoupling principle is the theory of
U-statistics. Such statistics arise in the definition of unbiased estimators, including
the sample variance of a sequence of i.i.d. random variables, and as higher-order
terms in von Mises expansions of smooth statistical functionals. A U -statistic is
the average value over the sample X,, ..., X, of a function of several variables k;
50, it involves a multiple sum of m!(}}) terms h(X;,, .. ., X;,). Decoupling reduces
the U-statistic to an average of terms of the form A(X ,.", ..., Xi), where each
entry of h (say, the jth entry) is filled up with the terms of a different, independent
copy of the original sequence of random variables (say, {X ,’ :i=1,...,n}). This
produces enough independence so that this average, conditioned on all but one
of the independent sequences, becomes a sum of independent random variables.
Decoupling is very different from Hoeffding’s decompositions and constitutes
an additional extremely powerful tool for analyzing U-statistics and processes.
For instance, if the kernel has conditional mean zero, then decoupling allows for
symmetrization and randomization, which are tools used to freeze the variables
involved and/or reduce the problems to ones involving a weighted sum of Bernoulli
random variables. Decoupling has played a central role in recent advances in the
asymptotic theory of U -statistics, and has produced, among others, optimal results
on the central limit theorem and very sharp results on the law of the iterated
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logarithm and on exponential inequalities. It has had even a more pivotal role in
the development of the theory of U-processes, the analogue of empirical processes
for U-statistics. We present a rather complete account of the asymptotic theory
of U-statistics and U-processes, as well as a few statistical applications of the
latter, e.g., to multidimensional M-estimators (including analogues of the sample
median in several dimensions), and to the analysis of truncated data. As part of this
study, we give a unified account of the construction of the chaos decomposition
of the L, space of a Gaussian process and the proof of the central limit theorem
for degenerate U -statistics.

In fact, we consider decoupling of a generalized form of U-statistics, with the
kernel h varying with the multiindex (i1, ..., in). In this generality, the results
presented apply as well to multilinear forms in independent random variables,
which constitute one of the first objects to which decoupling was applied, moti-
vated by multiple stochastic integration. A generalization of another historically
important decoupling result comparing tail probabilities of Gaussian polynomials
also follows in a straightforward way by combining decoupling of U-statistics
with the central limit theorem.

The latter part of the book is devoted to the general theory of decoupling.
More specifically, consider an arbitrary sequence {d;} of real random variables
and let F; be an increasing sequence of o-fields to which it is adapted (we
can take F; to be the o-field generated by d,,...,d;). Let § be another o-
field contained in F4,. Then, a sequence of random variables {¢;} is a decoupled
version of {d;} (with respect to {F;} and §), if i) L(¢&;|Fi—1) = L(di|Fi—1).
ii) the sequence {e;} is conditionally independent given §, and iii) L(¢;| Fi_;) =
£L(e;]$). Condition i) indicates proximity between the two sequences and allows
for comparison of some of their characteristics such as moments of sums or
maxima, etc. Sequences related by condition i) are said to be tangent to each other.
Condition ii) expresses the fact that the sequence {¢;} is more independent than the
sequence {d;}, and iii) allows for transfer to the original sequence {d;} of properties
of the sequence {e; } related to its conditional independence given §. Conditions ii)
and iii) together are known as the C.I. (conditional independence) condition.
Then, a general decoupling result is simply an inequality relating E® (" d;) and
E®(}"e;), where ®(x) could be |x|”, exp x|, or I;5, in order to compare
moments, exponential moments, or even the distributions of the sums; also, sums
can be replaced by other functionals, such as maxima. It is important to stress the
fact that decoupled sequences always exist and therefore, decoupling inequalities
in this general context have a broad appeal as they always apply (the drawback
is that they are not always useful). Moment inequalities hold in great generality
and exponential moment inequalities hold also quite generally: but tail probability
inequalities, which do hold in the case of Banach space valued U -statistics, do not
hold in general. There are other types of inequalities such as, e.g., comparison of
weak moments.

There is a very close connection between decoupling inequalities in this gen-
eral setting and martingale inequalities. For instance, it can be shown that the
square function martingale inequality of Burkholder-Davis—Gundy is equiva-
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lent to a decoupling inequality for martingales. There is also interplay between
martingale and decoupling inequalities: for example, the Burkholder—Rosenthal
inequality for martingale differences implies a decoupling inequality, and a sharp
decoupling inequality paired with a sharp version of Rosenthal’s inequality for
sums of independent variables implies the Burkholder-Rosenthal inequality with
best constants. Also, it is possible to give unified proofs of martingale inequal-
ities and decoupling inequalities for conditionally symmetric sequences. These
relationships are explored in depth in the chapters on decoupling of tangent
sequences.

We also present the principle of conditioning, which is a general method for
obtaining limit (in distribution and almost everywhere) results for sums of de-
pendent variables based on analogous results for sums of independent variables.
As applications we give a proof of the Brown—Eagleson central limit theorem for
martingales by applying the principle of conditioning along with the Lindeberg-
Feller central limit theorem for sums of independent random variables. As another
consequence of this result we provide a proof of the central limit theorem for a
sequence of (arbitrarily dependent) two by two tables. This result is relevant in
the theory of biostatistics and provides a situation in which martingale methods
do not seem to apply but the decoupling approach succeeds. Other applications
of the general theory of decoupling that we present in detail include a general
method for extending exponential inequalities for sums of independent variables
to the ratio of a martingale over its conditional variance, an extension of Wald’s
equation to U -statistics, estimation of moments of randomly stopped U -statistics
and an extension to U -statistics of Anscombe’s theorem, convergence of moments
included.

The decoupling approach to handling problems with dependent random vari-
ables can be traced back to a result of Burkholder and McConnell included in
Burkholder (1983) which represents a step in extending the theory of martingales
to Banach spaces. Therefore, it can be said that decoupling (for tangent sequences)
was born as a natural continuation to the martingale approach in order to handle
problems that traditionally could not be handled by means of martingale tools.
A typical inequality for martingales due to Burkholder and Gundy compares a
martingale to its square function, which is the square root of the sum of squares
of its martingale difference sequence. This in effect transforms a problem involv-
ing martingales into one involving sums of non-negative variables and provides
sufficient advantage in developing solutions to the problem in case. The idea of
replacing the square function of a martingale by a decoupled (conditionally inde-
pendent) version of the martingale was proposed in order to avoid problems with
the definition of a square function in a Banach space. The first general decoupling
inequality for tangent sequences was obtained by Zinn (1985) and extended by
Hitczenko (1988).

A turning point in the theory of decoupling for tangent sequences has been
Kwapieit and Woyczynski (1991) (available as a preprint in 1986). It is shown
in this paper that one can always obtain a decoupled tangent sequence to any
adapted sequence, hence making general decoupling inequalities widely applica-
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ble. This work also develops the theory of semimartingale integrals via decoupling
inequalities. Decoupling has been quite effective in treating problems involving U-
statistics, multilinear forms and randomly stopped sums of independent random
variables. Decoupling of multilinear forms was first considered by McConneil
and Taqqu (1986) with a view towards the development of a theory of multi-
ple stochastic integration. Their article, which precedes Zinn’s and Kwapiert and
Woyczynski’s, provided great impetus to the theory. Concerning randomly stopped
sums, Klass (1988, 1990) obtained definitive decoupling results for variables in
general Banach spaces. Kwapieri and Woyczynski (1992) contains the develop-
ment of the theory up to that point, including several L, and tail probability
inequalities, and uses decoupling to develop a general theory of stochastic integra-
tion. Building upon Kwapieri’s (1987) extension of McConnell and Taqqu’s result,
de la Pefia (1992) further extended decoupling to a general class of random vari-
ables that contain both multilinear forms and U-statistics with values in general
Banach spaces, hence providing a springboard to a wealth of results, initiated by
Arcones and Giné (1993), on the general theory of U-statistics and more generally
U-processes, the latter introduced by Nolan and Pollard (1987). Kwapieii (1987)
and Kwapien and Woyczynski (1992) proved the first tail probability decoupling
inequalities for quadratic forms and multilinear forms of independent random
variables. Giné and Zinn (1994) obtained a decoupling and symmetrization in-
equality for U-statistics. The definitive decoupling result along this line of work
is de la Pefia and Montgomery-Smith (1994), which provides a tail probability
decoupling inequality for generalized U-statistics. Concerning the general theory
of decoupling, recent developments include work of de la Pefia (1994), with the
first general exponential decoupling inequality, and of Hitczenko (1994), who ex-
tended this result by providing L, inequalities with constants independent of p.
A more detailed account of the history of the developments of decoupling can be
found at the end of each chapter.

This book is addressed to researchers in Probability and Statistics and to ad-
vanced graduate students. Thus, the exposition is at the level of a second graduate
course. For instance, we do not include a proof of Doob’s maximal inequality,
but we do include one for the Burkholder-Davis—Gundy inequality. This text
contains as well a self-contained section on weak convergence of processes, suf-
ficient for the study of U-processes. Except for relying on material from standard
first year graduate courses, we only occasionally refer the reader to material not
presented in this book. We have successfully incorporated some of the material
from this book in our first year graduate probability courses, including Levy’s and
Hoffmann-Jgrgensen’s inequalities, the development of Wald’s equations, expo-
nential inequalities, some of the decoupling inequalities for U-statistics, which
require only basic facts about conditional expectation and conditional Jensen’s
inequality, and several applications to the asymptotic theory of U -statistics.

The content of the book divides naturally into four parts. 1) Chapter 1, on sums
of independent random variables; 2) Chapter 2, on randomly stopped sums and
processes; 3) Chapters 3-4-5 on U-statistics and U-processes; and 4) Chapters 6—
7-8 on the general theory of decoupling, with applications. The last three parts can
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be read independently of each other. On the other hand, the material in Chapter 1
is used in each of the other parts, occassionally in Chapters 2, 6, 7, and 8, but more
often in Chapters 3, 4, and 5.

In the process of writing this book we benefited from past and present discus-
sions with several people, including D. Alemayehu, M. Arcones, D. Burkholder,
R. Dudley, N. Eisenbaum, J. Engel, P. Hitczenko, Z. Jin, M. Klass, S. Kou,
S. Kwapieri, R. Latata, S. Montgomery-Smith, D. Pollard, J. Szulga, J. Wellner,
M. Yang, C. H. Zhang, and J. Zinn.

We would like to thank Doodmatie Kalicharan for excellent typing of part of
this book.

New York Victor Hugo de la Pefia Diaz Infante
Storrs Evarist Giné i Masdéu
April 1998
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1

Sums of Independent Random Variables

The theory of decoupling aims at reducing the level of dependence in certain prob-
lems by means of inequalities that compare the original sequence to one involving
independent random variables. It is therefore important to have information on
results dealing with functionals of independent random variables.

In this chapter we collect several types of results on sums of independent
random variables that will be used throughout. We consider aspects of estimation
of tail probabilities and moments that are relevant to the theory of decoupling and
develop them to the extent needed, and, in a few instances, a little more.

We begin with the classical Lévy maximal inequalities, bounding the tail prob-
abilities of the maximum of the norm of a sum of independent symmetric random
vectors by the tail probabilities of the norm of the last sum, that is, the reflection
principle for symmetric random walk extended to random variables taking values
in a Banach space. Then, we also present analogous maximal inequalities for sums
of arbitrary independent identically distributed random vectors. The proofs in the
Banach space case are not more difficult than for the real case.

A way to prove integrability for (classes of) random variables is to obtain
bounds for tail probabilities in terms of the squares of these same probabilities at
lower levels. This is illustrated by the Hoffmann-Jgrgensen type inequalities that
we present in Section 2, which bound the pth moment of a sum of independent
centered random vectors by a constant times the same moment of their maximum
plus the pth power of a quantile. They are important as a means of upgrading

|
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stochastic boundedness (or weak convergence) of sequences of variables to uni-
form boundedness (or to convergence) of their moments. This very useful type
of inequality originates with Kolmogorov’s converse to his maximal inequality.
As an application, we present a kind of reversed Jensen’s inequality for exponen-
tials. Other instances of the use of these inequalities can be found in subsequent
chapters.

Next, we come to estimation of moments, starting with Khinchin’s inequalities
(Section 3). In their crudest form these inequalities assert that on the span of a
Rademacher sequence all the L, norms are equivalent. The inequality comparing
the L, and L, norms is proved here for Rademacher linear combinations with
coefficients in a Banach space (Khinchin—Kahane inequality) and with best con-
stant. Extension to all moments and to Rademacher chaos is done in Chapter 3.
This will be a basic ingredient in the asymptotic theory of U-statistics.

Finally, we consider the question of finding two-sided bounds for the L, norm
of a sum of independent random variables in terms of quantities that involve
only one-dimensional integrals with respect to the probability laws of the in-
dividual summands. This is the subject of the last two sections, where several
approaches are developed. Hoffmann-Jgrgensen’s inequality together with a quite
precise estimate of the moments of the maximum of independent variables is
used in one of the approaches (which carries to infinite dimensions), whereas the
L function bounds, which constitute the most precise approach, do imply Rosen-
thal’s and Hoffmann-Jergensen’s inequalities in R with essentially best constants.
The K function approach, which was chronologically the first, is also briefly
discussed. We present three applications of these inequalities. One, already men-
tioned, is Rosenthal’s and Hoffmann-Jgrgensen’s inequalities for real variables
with constants of the best order. Another, computes, up to multiplicative constants
independent of p, the L, norm of linear combinations of Rademacher variables.
The third compares moments of sums of arbitrary positive random variables and
martingales to moments of sums of independent positive and/or centered variables
with the same individual distributions; these inequalities constitute an example of
decoupling inequalities.

The developments just described require certain lemmas on truncation, random-
ization, etc., that are elementary but quite useful.

1.1 Lévy-Type Maximal Inequalities

This section is devoted to the extension of the classical Lévy inequalities for sums
of independent symmetric random vectors to sums of not necessarily symmetric,
but i.i.d., random vectors, possibly with different constants. These inequalities
hold in great generality but, in order to avoid measurability considerations we
assume the variables take values in a separable Banach space B.

For completeness sake, we begin with Lévy’s inequalities, that are used all over
this text.
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THEOREM 1.1.1. Let X;,1 <i < n, be independent symmetric B-valued random
variables. Then, for every t > 0,

l,%n‘;xuw}<zpr[uzx||>t] o

and
Pr max Xl > ] §2Pr{uix,-||>t}. (1.1.2)
- = i=|
In particular,
E( max | Zx )" <2 LHl E(mix)” < 2] R
forall p > 0.

PROOF. Weset §; = X X, k=1,...,n Thesets
Ac:={IISill <tforl <i <k—1 |85 >t}
are disjoint and
[ max 15l > £} = Uiz 4

(A is the event “the random walk §; exceeds the level ¢ for the first time at time
k) For each k < n we define

S = 8 — Xpr =+~ Xa

and note that, by symmetry and independence, the joint probability law of the n
variables (X, ..., X,) is the same as that of (X, ..., Xz, = X4, ..., —X,), 80
that S, and S,‘,"" both have the same law. On the one hand, we obviously have that

Pr{Ac N (IS4l > 1}] = Pr[Ac N (ISP) > 1],
and on the other hand,
Ac = [Ae N IS > ] U AN ISP > 1}]
since otherwise there would exist w € A; such that
2Se@)l = 18, (@) + SO @)l < 21,
a contradiction with the definition of A,. The last two identities imply that

PrA, <2Pi{AcN{lIS:ll > 1} k=1,....n
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and therefore,

Pr{ max 15 > ] =3 Prac <2 Pl IS, > 1]
- k=1 k=1

< 2Pr]|IS.l > 1},

which gives inequality (1.1.1). The second inequality is proved in the same way
if we redefine A; as

A= {IXill stforl <i <k— 11X | >t}
and S as '
SO = Xy — = Xemr + X — Xegt — - — Xan.

The statements about expected values follow from (1.1.1) and (1.1.2) by inte-
gation by parts ([ |E[PdP = p [ 17~ Pr{i§] > t}d). o

If the random vectors are not symmetric, we have the following weaker inequal-
ity:

PROPOSITION 1.1.2. Let X;, i < n, be independent B-valued random variables.
Then, forallt > 0,

L] P
t
Pr l‘?gﬂ“;Xi“ >:]53T23(Pr[||§x,-||>§]. (1.1.3)

PROOF. Almost as in the previous proof, we define, forallu, v > 0and 1 <k <
n, Ay = {lISill <u+vfori <k, and ||Sll > u + v}. The sets A, are disjoint
and their union is {max, <<s ||Sk|l > u + v}. Therefore,

Pr{lIS,ll > u} > Pr{||S, [l > u, max |5l > u+ v}

> Y Pr{A N {IS, — Sell < v}}
k=1

=Y Pr{Ac) Pr{IS, — Sill < v}
k=1
> [1 - maxPrlllS, — Sell > v}] Pr{ max 1Scll > u + ).

This is the well-known Lévy-Ottaviani inequality. Taking u = ¢/3 and v = 2¢/3
in this inequality gives

Pr{||Sa1l > ¢/3}
Pr
[,‘g,?sxn 1Sl > '] = T— maxeen Pr{IS, — Skl > 21/3]

maxy < Pr{|| Sell > £/3}
T 1 —2maxe<n Pr{liSell > £/3}

This proves inequality (1.1.3) if max<, Pr{||Sell > ¢/3} < 1/3. But (1.1.3) is
trivially satisfied otherwise. a




1.1 Lévy-Type Maximal Inequalities 5

The above two inequalities are classical. Next we will extend Lévy’s inequality
to sequences of random vectors which are not necessarily symmetric, but which
are i.i.d. The crucial point for these extension consists of the following theorem.

THEOREM 1.1.3. If X;, i € N, are independent identically distributed B-valued
random variables, then, for 1 < j <k < o0,

J k
Pr[||;x,-|| >t]531>r{||§x,-||>z/10}. (1.1.4)

For k = 2 this theorem has a surprisingly simple proof: Let X, Y, Z, be i.i.d.
Then,
Pr{lleI > t} =Pr{||(X +N+X+2D)—- XY +2Z)| > 2t]
<3Pr{IX + Yl >2/3}. (1.1.4)
The general case is more delicate. Its proof rests on the lemma that follows.

First, an auxiliary definition: we say that x is a t-concentration point for the
random vector X if Pr{| X — x|l > 1t} < 1/3.

LEMMA 1.14. Let X;, i € N, be i.i.d. random vectors. If S; = ¥°/_, X; has a
t-concentration point s; for 1 < j <k, then

lksj — jsell <3G+ j)r. (1.1.5)
PROOF. First we observe that for X and Y arbitrary, if x is a z-concentration

point for X, y is a t-concentration point for Y and z is a t-concentration point for
X + Y then

lx +y -zl < 31. (1.1.6)
To see this just note

Pr{lx+y—zll >3t} =Pr{| X —x+Y—y—(X+Y —2)] > 3t}
SPr{llX — x| > e} +Pr{llY =yl >t} +PrlIX +Y —z[ >t} < 1,

so that Pr{flx +y — z|l < 3t} > O and therefore (1.1.6) holds since x, y, and z
are nonrandom. To prove the lemma we now proceed by induction. The lemma
obviously holds for j = k, and (1.1.6) gives it for k = 2. Hence, it suffices to
show that if the lemma holds for 1 < j < r forall r < k&, then it also holds for
1 < j < k.Now,

Jsk —ks; = jsy — (k= j)sj = js; = (e — Gk — j)s;) + jlse — 55 — s j).
Hence, applying (1.1.6) and the induction hypothesis, we obtain

sk — ksill < Wjsk—; — Gk — sl + jlise — se—j — 55l
<3k —-j+)Dt+3jr=3%k+ j). 0



6 1. Sums of Independent Random Variables

PROOF OF THEOREM 1.1.3. We distinguish three cases. Suppose first that
Pr{}|Sc—;ll > 9¢/10} < 1/3. Then, independence of S; and S; — §;, together
with the fact that S;_; and S; — S; have the same distribution, give
1
Pr{|iS;ll > t} < Pr{iIS;}l > ¢, 1S — S;ll < 9¢/10} + §Pr{ WSl > ¢},
and therefore

3 3
Pe{liS;ll > 1} < EPr{"Sj" > 1,118 = Sl < 9¢/10) < EPT{"SI:" > 1/10}.

Next we asume that there exists some 1 < i < k such that S; does not have any
(t/10)-concentration points. Then

]

t
Pr[||Si+Xi+l+"'+Xk">1_0|Xi+1a-- s Xk z 3

and therefore
1
Pr{iiScll > ¢/10} > ;PT{IIS | >t}

foralil < j <k.
Suppose, finally, that Pr{||S;—;|l > 9¢/10} > 1/3 and that S; has a (1/10)-
concentration point s; for all 1 < i < k. Then

{08kt = 9t/10} N {1k — se—; Il <2/10} # @
and therefore, ||s¢—;]| > 4t/5. Hence, by Lemma 1.1.4,

Il 2 Tl = 37— 5 > 2t L
. k—j 10 5(k—j) 10(k—j) 5
This gives
2 2
Pr{|IScll = ¢/10} = Pr{||S, — s¢ll < ¢/10} > 32 :;PT{IIS >} o

Combining Theorem 1.1.3 and Proposition 1.1.2 we readily obtain an analog
of Lévy’s inequality for sums of i.i.d random variables.

THEOREM 1.1.5. If X;, i € N, are independent identically distributed B-valued
random variables, then, for | <k <n <ocandallt > 0,

[.<k<,,“ZX || >’l <9Pf{||ZX | > = ] (1.1.7)

Theorems 1.1.3 and 1.1.5, which are quite recent (see the notes at the end of this
chapter), constitute an important addition to the theory of sums of i.i.d. variables.
They have consequences for decoupling, to be seen in Chapter 3. To immediately
illustrate their usefulness, we end this section with an application to a contraction
principle and to randomization for sums of i.i.d. random vectors. For this result
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(and only for it) we assume that the Banach space B where the variables lie is over
the complex numbers.

COROLLARY 1.1.6. There are universal constants 0 < ¢y, ¢z < 00 such that if
X;,i € N, are either i.i.d. or independent and symmetric, and if;, 1 <i < n, are
any complex numbers such that l;| < 1, then, foralln e N and: > 0,

([ exi] > o] <e P |3 X > ] (11.8)
i=l i=l

PROOF. Letk,1 <k < n, be fixed. The constants ¢r;, | <i < k, can be assumed
to be real and in decreasing order —1 < o < --- < a; < 1. So, we can write

— 1+ Y% o forall j <k whereo; > Oforalli < kand 3*_ o; < 2.
Then,

1301 = 133~ )3

E -2 X
i=| i=l
J k
o) 13K+ (]
i=l i=\
<3max]> X
i=l

1<j<k

i:

Now the result follows from Theorem 1.1.5 in the i.i.d. case and from Theo-
rem 1.1.1 in the symmetric case. o

REMARK 1.1.7. Randomization. It is clear (Fubini’s theorem) that the constants
a; in the previous Corollary can be replaced by random variables 6; uniformly
bounded by 1 and independent from the sequence (X}

REMARK 1.1.8. Measurability. The previous propositions can also be proved
in the following more general context: The variables X; are the coordinates of
a product probability space (SV, 8N, PN), the norm || - || is the sup over a not
necessarily countable family ¥ of measurable functions on S and Pr is replaced
by outer probability Pr*. The measurable outer envelope || - || of the sup norm
over ¥ works essentially as a norm and Pr*{|| - ||& > ¢} = Pr{|| - |3 > ¢} forall
t > 0, and this is essentially all that is needed to show that the above proofs work
with only formal changes in the setting just decribed. A good available reference
for calculus with outer probabilities is van der Vaart and Wellner (1996). We skip
the details, but anticipate that this more general context is the natural one for
U-processes, to be discussed in Chapter 4.



