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Preface

The impact of chemistry on the world is immense. Its importance is realized in basic
chemical and petroleum industries, as well as in high-technology areas such as
energy, environmental, biochemical, biomedical, and advanced materials, which are
rapidly shaping the future. Yet although it is obvious that chemistry is a necessary
ingredient in our world, it has been less clear in academic circles what skills are
nceded by scientists and engineers employed in the chemical industry and govern-
ment to be successful professional practiioners.

To better understand the problem of educational needs, let us first consider
chemistry to be a continuum that ranges from theoretical science to the application
of chemical principles in technology. A simplistic view of a professional’s responsibil-
ity within the continuum would be that a chemist takes care of theory and a chem-
ical engineer handles application. Unfortunately, this is not how the industrial world
works: Individual chemists and chemical engineers often find themselves at various
places in the continuum. Chemists’ responsibilities many times include applications,
and chemical engineers find that they require a sound knowledge of basic chemistry.
Hence, it is apparent that the practicing chemical professional in industry and gov-
ernment requires a broad range of chemical knowledge.

Academic training of chemical engineers already acknowledges the need for a
broad chemical education because it mandates that undergraduate students take sig-
nificant course work in analytical, organic, and physical chemistry, all, incidentally,
usually taught by the chemistry department at colleges and universities. Degree
accreditation, which is a joint effort by the American Institute of Chemical Engi-
neers {AIChE) and the Accreditation Board for Engineering and Technology
(ABET), is not granted unless the chemistry requirements are met. Actually, the
total credits of chemistry required by the chemical engineering degree far exceed the
number normally required for a chemistry minor in most liberal arts programs. The
additional applied chemistry courses, such as thermodynamics and kinetics, that are
taken by the engineering students make it even more evident that the holder of a
baccalaureate in chemical engineering has an exceptionally strong chemistry back-
ground.

The inverse, that the academic training of chemists requires a significant num-
ber of courses in chemical engineering, is not the case except in certain countries in
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continental Europe. The lack of engineering courses causes problems for the chem-
ist when he or she ends up in an applications area of the chemistry continuum.

However, the problem can be alleviated by providing chemical professionals
with sufficient chemical engineering background, knowledge, and wherewithal that
enable them to realize their full potential.

THE APPROACH OF THIS BOOK

Chemists already have a theoretical grounding in many topics that engineers are
trained to apply, so the approach of this book is to start with what chemists know
and add relevant principles to them. I do not seek to teach a new approach to a skill
that chemists already possess. Chemists, for example, learn stoichiometry and certain
aspects of thermodynamics, chemical equilibrium, and chemical reaction kinetics. 1
have chosen to concentrate on new principles and move them from the theoretical
to the semiempirical to the empirical approaches needed to use them.

I have selected my approach based on my past experience gained from teaching
chemical engineering to chemists. Some people might argue that chemists should
take all of the chemical engineering courses they have not had, but I believe that
chemists already have a strong background in many of the topics covered in intro-
ductory chemical engineering courses. 1 did not always believe this. While at the
University of Denver in the late 1960s, I initiated and taught a graduate course
titled “Chemical Engineering for Scientists”. One part of the course called for me to
teach the students how to do mass balances. I handed out a set of homework prob-
lems of the sort that are typical in an engineering course, requiring them to be done
by the next class.

At the next meeting, I collected the homework and began to go over the prob-
lems. As I did so, the students in the class wore perplexed expressions that changed
to surprisc when T obtained the correct answer. Sensing that something was out of
order, I asked the group what was wrong. Their collective response was, “We’ve
never seen anyone do a mass balance that way.” I asked one of them to work the
problem at the board, upon which I looked perplexed and surprised when the stu-
dent got the correct answer.

The obvious lesson I learned is that chemists, as do scientists and engineers,
thoroughly understand basic mass balances and do not have to learn stoichiometry.
Similarly, other topics such as chemical equilibrium are understood in much the
same way. Therefore, this text, while it touches on these subjects, will do so only as
a brief review and exposure to the chemical engineering approach.

HOW THIS TEXT CAN HELPYOU

The selection of topics used in this book was derived from my experience working
with chemists in industry, from my teaching and research activities, and, last but not
least, from my interactions with more than 4000 professionals who have taken my
three-day course, Chemical Engineering and Process Fundamentals for Chemists,
sponsored by the American Chemical Society. The last experience has been espe-
cially useful in shaping the text and has provided insight as to how powerful chem-
ical engineering knowledge can be in enhancing one’s career. A few examples
reported by some of the course alumni will demonstrate this point:
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® One individual who came to the class was the supervisor of a large number of
professionals (half were chemists and half engineers). The engineers, the
supervisor said, were using the supervisor’s lack of process knowledge to
their advantage, using engineering jargon during meetings and generally
making things difficult. After taking the course, the supervisor was able to
understand what the engineers were discussing and was, in fact, able to ask
more perceptive and applicable questions and to control meetings with more
authority. Understanding engineering basics leveled the playing field.

® Another class attendee was a researcher who had large amounts of interesting
data that had defied interpretation. A knowledge of how to apply dimension-
less groups of numbers to data from different scales of operations (a tech-
nique commonly used by chemical engineers) gave this individual the means
to both comprehend the significance of the data and the ability to write three
refereed journal articles.

® A third person was transferred to a pilot plant group after taking the course.
This individual said that the understanding of chemical engineering basics
(i.e., heat transfer and reactor design) made it possible to perform on a level
orders of magnitude above the precourse level.

There is general concensus among course attendees that they were able to han-
dle a wide range of process situations and problems. Furthermore, everyone agreed
that technical communication and jargon problems disappeared.

HOW TO USE THIS BOOK

Each chapter contains examples of problems and their complete solutions, the com-
plexity of which should not be a problem to any chemist, scientist, or enginecr who has
had calculus. (Most of the problems require more algebra than calculus.) And finally,
references and further reading sources are provided at the end of each chapter.

I suggest that you read Chapters 1 through 6 in order because each subsequent
chapter builds on the concepts of the previous one. Working through the solved
examples in each chapter is extremely helpful. Above all, try to develop a physical
sense of the meaning of the materials.

Finally, this text is just a start, not an end. There is a Chinese proverb that says,
“A journey of a thousand miles begins with a single step.” It is my hope that this
text will provide many steps along the journey toward an understanding of chemical
engineering principles and applications, a journey that will bring you to an even
higher level of professional competence.

RicHARD GRISKEY
88 Pine Grove Avenue
Summit, NJ 07901
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Introduction to Chemical
Engineeving Principles

INTERFACE BETWEEN CHEMISTRY AND
CHEMICAL ENGINEERING

Chemistry and chemical engineering, though taught as separate disciplines, are parts
of the fabric that is chemical science and technology. Although they are closely re-
lated, chemistry and chemical engineering do differ.

Chemistry came first in the cultures of many nations from the earliest times.
Chemical engineering came later when the large, complex production during the In-
dustrial Revolution (18th and 19th centuries) demanded skills beyond those offered
by chemistry or traditional engineering education. Fluids, previously transported on
a small scale in buckets or flasks, neceded to be moved by piping and pumps. Heat
could no longer be supplied by throwing another log on the fire. Industrial pro-
duction needed the help of an engineer.

At first, a mechanical engineer scemed to have the knowledge to make large-
scale processes possible. But mechanical engineering could not provide the technol-
ogy needed because it was divorced from chemistry. Mechanical engineers worked
with mass. The mole was a foreign concept to them, and molecular weight was as
close as they came to chemistry. There was a chasm between chemists and mechan-
ical engineers.

The chemical industry needed engineers familiar with chemistry and production,
so chemical engineering was born. At first, chemical engineering was a branch of
chemistry, just as organic, physical, inorganic, and analytical chemistry were estab-
lished. During the Industrial Revolution, however, chemistry was undergoing a ma-
jor change, developing into a science in which it was necessary to know the whys as
much as the hows. Chemistry moved toward elucidating fundamentals and away from
applications.
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Today chemistry continues to move toward fundamentals, and this development
puts chemists at a disadvantage in dealing with industrial processes. The physical
chemistry course is an example of chemistry’s concentration on fundamentals. Less
than 20 years ago, it included treatment of the laws of thermodynamics, solution be-
havior, phase equilibrium, chemical kinetics, and diffusion phenomena, all applica-
ble to designing and operating industrial processes. In many universities today, how-
ever, physical chemistry is dedicated mainly to statistical and quantum mechanics.
Applied chemistry is now taught mainly in the engineering curriculum.

WHAT’S IN THIS BOOK

We’re in another revolution now. New materials, new industries, and changing eco-
nomics demand engineering skills from chemists, scientists, and researchers unedu-
cated in engineering. With the proliferation of small technical companies, many clas-
sically trained scientists wear the hats not only of the discoverer of a new material,
but also of the manager in charge of producing it commercially.

If you’re reading this book, you’ve realized you need some practical engineer-
ing skills. This chapter summarizes the principal areas in chemical engineering that
will enable you to understand and work successfully in a chemical plant, pilot plant,
product development group, or scale-up project.

It is divided into chapters that concentrate on applied thermodynamics, fluid
flow, heat transfer, mass transfer, chemical engineering kinetics, process design and
control, and engineering cconomics. Each chapter presents a discussion of funda-
mentals with a large number of examples and their solutions. The approach should
give you a firm grasp of basic principles and the ability to solve practical problems.

MASS BALANCES

An initial course in chemical engineering usually covers mass balances, familiar to
chemists as stoichiometry. A mass balance represents nothing more than the Law of
Mass Conservation, i.e., what goes into a system must come out or accumulate. On
an industrial scale, mass is balanced across entire processes. It is one of the first tasks
an engineer undertakes in designing or optimizing a process.

To obtain a mass balance, apply the following systematic approach:

1. Make a schematic flow diagram of the process, showing all process
streams flowing into and out of the system, being sure to include recycled
and side streams.

2. Note all of the physical and chemical changes taking place, and list all avail-
able data about the streams, including flow rates, temperatures, and pressures.

3. Choose a basis for the mass balance calculation (moles or mass) and a time
period over which the balance will be calculated.

4, Select the process segment of interest and circle it to establish the streams
entering and leaving. This circle is called the boundary. Process streams that
do not cut the boundary, including recycled flows, are not considered in
the mass balance calculations.

5. Develop equations that describe relationships between entering and exiting
streams and enable you to calculate the mass balances across the schematic.
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You may need to develop several independent equations, one for each un-
known variable. Sometimes in complex systems, many components are in-
terrelated, greatly reducing the number of independent equations.

6. To solve the mass balance, track a compound or compounds through the
chosen process segment. If a chemical reaction occurs, track an element or
a radical.

Solutions for mass balance problems cannot be generalized and are handled by un-
derstanding the process. Because of the lack of generalization possible, this book
does not devote a chapter to mass balancing. Instead, the mass balances shown in
Examples 1.1 and 1.2 will get you started, and special situations in mass balancing
will be noted in chapter examples hereafter.

Example 1.1 demonstrates the principle of mass balance, the interaction of in-
put, output, and accumulation.

Example 1.2 illustrates several important mass balance techniques. The first tech-
nique shows how to track specific components through a process, rather than char-
acterizing the overall mass flow. The second technique shows how to define the
boundary for a mass balance; only those process streams within the boundary are
considered in the mass balance calculations. Furthermore, we’ll see that you can de-
fine as many boundaries as you need to solve the balance of a given situation.

EXAMPLE |.1. MASS BALANCE ACROSS A STORAGE TANK

A half-full 60,000-gallon gasoline storage tank is filled from five sources in one day.
These sources supply 8,000, 7,000, 5,000, 13,000, and 19,000 gallons, respectively.
During the day, 57,000 gallons of gasoline are withdrawn. What is the final volume
of gasoline in the tank?

The mass balance is solved by following the six steps previously described. The
schematic for the first step is a sketch of a tank showing five input and one output
streams. No chemical changes take place, only changes in flow. The mass balance is
in gallons and the time interval is one day.

The law of conservation is

2W‘input = Emoutput + 2 Maccumulation

for which e is the mass or moles. (When there is no accumulation of flow, the sys-
tem is operating under steady-state conditions. The accumulation here represents
unsteady-state conditions.) The basis for this calculation is mass. To convert the units
in gallons to mass, we apply

m= Vp

where Vis volume and p is the density of gasoline in weight per unit volume, The
mass balance can then be stated:

pinputsl Vinput = Poutputz Voutput + Palccumulation2 Vaccumulation
If
Pinpur = Poutpur = Paccumulation
then,

Erfinput =3 Voutput + 3 Vaccumulation



