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Preface

In recent years, geometry has played a lesser role in undergraduate courses than it has ever
done. Neveriheless, it still plays a leading role in mathematics at a higher level. Its central role in
the history of mathematics has never been disputed. It is important, therefore, to introduce some
geometry into university syllabuses. There are several ways of doing this, it can be incorporated
Into existing courses that are primarily devoted to other topics, it can be taught at a first year level
or it can be taught in higher level courses devoted to differential geometry or to more classical
topics.

These notes are intended to fill a rather obvious gap in the hiterature. It treats the classical topics
of Euclidean, projective and hyperbolic geometry but uses the material commonly taught to
undergraduates: linear algebra, group theory, metric spaces and complex analysis. The notes are
based on a course whose aim was two fold, firstly, to introduce the students to some geometry
and secondly to deepen their understanding of topics that they have aiready met. What is required
from the earlier material is a familiarity with the main ideas, specific topics that are used are usually
redone.

The style of the course was informal and | hope some of the associated good aspects have
survived into this version. In line with this, | have taken a concrete viewpoint rather than an
axiomatic one. The view that | take is that mathematical objects exist and should be studied, they
are not arbitrarily defined as the axiomatic approach might suggest. This is the view of the vast
majority of mathematicians in their own work and it is a pity that this does not come across in more
undergraduate courses.

There are a large number of exercises throughout the notes, many of these are very
staightforward and are meant to test the reader's understanding. Problems, some of them of
interest in their owr. right are given at the end of the three parts. Some are straightforward and some
are more like small projects. The more difficult ones are marked with an asterisk.
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introduction

In Euclidean geometry, two triangles are congruent if one of them can e moved rigidly onto the
other. Definitions such as that of congruence, which tell us when two objects should be regarded
as being the same, are basic in geometry and are often used to characterize a particular gsometry.
Two sets A, B are defined to be equivalent if there is an ‘allowed transformation’ f such that
fA = B. For Euclidean geometry the allowed transformations are the rigid motions. In his Erlanger
programme of 1872, Felix Klein formulated the principle that a geometry is defined by its allowed
transformations. The force of this principle is to make a close connection between geometry and
group theory.

If S is a set (an example to bear in mind is the Euclidean plane R?), consider the group Bij(S)
consisting of all bijections f: S— S. (If S is a finite set with n elements this is the (familiar) symmetric
group S,,.) Toimpose a geometry on S is to consider a subgroup G of Bij(S); two subsets A, B being
equivalent for the geometry if there is an f e G such that fA = B. For Euclidean geometry, S is R?
and G is the group of all rigid motions. Klein's Erlanger programme not only says that the geometry
on S and the subgroup G determine each other but that they are, as a matter of definition, one
and the same thing. To obtain a worthwhile geometry, the subgroup G has to be chosen with some
care after considerable experience. Usually the set S has some structure and the group G
preserves this structure, examples are
H S may be a topological space and the elements of G are homeomorphisms of S.

ii) S may have certain subsets (for example, lines) that are mapped to each other by the elements
of G.

There are many other types of examples; in these notes we study the three ‘classical’' geometries,

Euclidean, projective and hyperbolic, but the approach is guided by Klein’s Erlanger programme.






Partl
Euclidean Geometry

We start by studying the linear groups. These are probably already familiar to the reader. They
play animportant role in the study of geometry.

The Linear Groups
The ring M(n,R) of all n x n matrices over the field R of real numbers has the general linear group
GL(n,R) as its group of units, that is, GL(n,R) consists of all the invertible real n x n matrices. We
will often identify M(n,R) with the space of all linear transformations T: R" — R". Note that M(n,R)
is a real vector space of dimension n?, and so can be regarded as the metric space R™. The
determinant defines a continuous map
det:M(n,R) —»R
(continuous because it is given by a polynomial in the coefficients of a matrix), and GL(n.R) is
det™'(R\ {0}),soasR\ {0} isan opensubset of R we see that
GL(n,R)is anopen subset of M(n,R) = R™.

The determinant is multiplicative and so defines a homomorphism of groups

def GL(n,R)— R\ {0).
Its kernel is the special linear group SL(n,R) consisting of matrices with determinant 1. The subset
SL(n,R) is closed in GL(n,R) and has dimension n? — 1 (but is hard to visualize — try to do so for
n=2).

Euclidean space R" will always be considered with an inner product x.y defined on i, this
satisfies
i) (x+y).z=x.z+y.zforallx,y,zeR",

ii)  (Ax).y =A(x.y)forallx,ye R", A eR,
i) x.y=y.xforallx,yeR", and
iv) xx=0<>x=0.

The inner product defines a norm || || on R" by ||| = x.x and a metric d by d(x,y) =|x—y|. Note
that d(x+a,y+a) = d(x,y) so that distance is translation invariant. From the viewpoint of Euclidean
geometry the most important transformations are those that preserve distances. We will now study
such linear transformations.

Alineartransformation T: R" — R"is called orthogonal if Tx. Ty = x.y forall x, y e R".
Abasis {ey, €5, . . . ,e,} forR"is orthogonal if
e.e=0ifi#]
=1ifi=j.
If we write x =$xe;andy =3y, then
x.y =Xy,
where on the right hand side x, y denote the columi vectors with entries x;, y; respectively. If T is
an orthogonal transformation and A is the matrix of T with respect to an orthonormal basis, an easy
ca'culation shows that
X[Ale = ltx
and by choosing various suitable x, y one sees that A'A = 1. Check this by using the following result.
Exercise Note thata; = eAe;and hence show thatif x'Ay = x'By forallx,y e R"then A = B.



The matrix of an orthogonal transformation with respect to an orthogonal basis is therefore
orthogonal in the usual sense for matrices. Note that a little care is needed in handling orthogonal
matrices because a matrix is oithogonal if and only if its columns (or rows) form an orthonormal
set of vectors. :

If X is a metric space, a map f: X — X is an isometry if it is onto and distance preserving, that
is, d(fx,fy) = d(x,y) forallx,y e X.

Exercise i) Show thatadistance preserving map is one to one.

i) Show that a distance preserving map f: X — X is not necessarily onto by considering
the map f: R, — R, defined by f(x) = x+1.
Exercise If X is a metric space, verify that the set of all isometries f: X — X forms a group under
composition.

The properties of the isometries of a metric space X are intimately connected with the properties
of X itself. The importance of orthogonal transformations in Euclidean geometry arises because
they are isometries of R", moreover, apart from translations, they are in a sense all the isometries.
Lemma i) IfT:R"— R"isalinearisometry then T is orthogonal.

ii) IfT:R"— R"islinear and norm-preserving then T is orthogonal.
Proof Notice that any linearisometry is norm preserving because any such isometry satisfies
T(x-y). T(x-y) = (Tx=Ty).(Tx=Ty) = d(Tx, Ty)? =d(x,y)? = (x-y).(x~y)
so by puttingy = 0 one gets
T2 = lix|f*.
Hence it suffices to prove ii). The map T preserves the norm of x—y so
T(x-y).T(x-y) = (x-y).(x-y).
Expanding these expressions using linearity gives
Tx.Tx-2Tx.Ty + Ty.Ty = x.Xx—2x.y +Vv.y.
But T also preserves the norms of xand y, so
Tx.Ty =x.yforallx,yeR",
and so T is orthogonal.

Of course there are isometries that are not linear,. for example, the translations T,: R" — R"
defined by Ta(x) = a + x are not linear unless a = 0. Later we will show that any isometry
f:R"— R"such thatf0 = Oislinear.

The set of all orthogonal n X n matrices form the orthogonal group

O(n) ={AeGL(n,R)|A'A=1}.
If Ais orthogonal than det A = +1 because det A' = det A and so
1 =detI = det(A'A) = det A'.det A = (det A)2.
The group O(n) has a normal subgroup, the special orthogonal group
SO(n) = O(n) n SL(n,R) consisting of the orthogonal matrices whose determinant is +1. This
subgroup of O(n) has index 2.
Examples O(1)={£1},SO(1) = {+1}.

The group O(2) consists of 2 X 2 matrices

elementary calculation shows that there is a 8 such that

BREA=H ]

a b whose columns are orthonormal. An



5
SC(2) consists of the matrices [cs:%see —cs(;gg] This matrix represents a rotation through the angle
0 about the origin. As_ SO(2) has index 2 in O(2), it has two cosets, one is SO(2) itself and the
other is SO(2). _?] which consists of the matrices cosd smﬂ]_ This matrix represents a

) e . ) sin 6§ —cosH
reflection Rein the line twhich makes the angle 6/2 with the x-axis.

. AR{(a)

(01

\
A
The relationship between O(n) and GL(n,R)

A matrix in GL(n,R) has independent columns and a matrix in O(n) has orthonormal columns.
The Gram-Schmidt process transforms an independent set of vectors into an orthonormal set,
so it can be used to define a mapping GL(n,R) — O(n). To make this precise it is convenient to
introduce the group T, (n) consisting of the set of upper triangular n x n matrices whose diagonal
entries are positive (T for triangular, + for positive).

Proposition T, (n)is asubgroup of GL(n,R).
Proof If A e T4(n), thendet A = ay; @ ... an, > 0. Hence T (n) is a subset of GL(n,R). The
matrix Aliesin T4 (n) if and only if
a;=0fori>]j
and a;>0.
IfA,BeT,(n)then .
‘ (AB); = Z aubyj.
Ifi > j, then either i > k or k = i > j; in the first case ay, = 0 and in the second b; = 0, so
(AB); = 0inboth cases. Ifi = j, then (AB); = a;b; > 0. S0 ABeT (n)ifA,BeT (n).
It remains to check that if A € T+(n) then so is A™'. Suppose A € T, (n) and AB = BA = 1. We
show thatb;; = 0 fori > j by downward induction oni. Firstconsideri = n, then
0 =a,byforj<n,sob, =0.
Suppose thatby; = Oforallj<kifk > i, then
0 = a;b;fori>j,sob;=0.



Giventhatb; = 0 fori> |, one gets that
a,b,; = 1foralli.
Hence as a, > 0 one sees thatb;, > 0. Hence B e T4 (n).

(The reader may prefer to go through this proof explicitly inthe casen = 2.)

Theorem 1 For a given A € GL(n,R), there are unique matrices B € O(n), C € T, (n) such that
A=BC.
Proof As suggested above, we use the Gram-Schmidt process to construct B from A and then
observe that they are related by A = BC with C € T, (n). In detail: let a,, a,, . . ., a, be the columns
of A. The first stage of the Gram-Schmidt process is to find an orthogonal set i, f, . .. f,. This
is constructed by induction as follows.

fy=ay,

fo=ac= X {(@f)i(f.f))f.
If F is the matrix with columns f,, f,, . . ., f, then F = AT,, where T, is in T4+(n), and in fact T; has
ones along the diagonal. Note that the matrix F is obtained from A by a sequence of elementary
column operations, each new column involving only earlier columns. The second stage of the
Gram-Schmidt process is to normalise the set f,, f,, . . ., f,, thatis, let b, = f; / [[f||. If B is the matrix
whose columns are by, b, . . . , b, then B = FT, where T, is a diagonal matrix with positive entries
(1 If]) on the diagonal, hence T, € T4 (n). If C =(T,T,)~' we have A = BC with B € O(n) and
C e T4(n). Moreover, it is clear from the formulae that the matrices B, C depend continuously on
the original matrix A.

It remains to check the uniqueness of this decomposition. Suppose A has two such
decompositions, B,C, and B,C, say. Then D = B, 'B; = C,C, ' is in O(n) n T4(n). But we will
show that O(n) n T, (n) ={I} and so the decomposition is unique. Let D € O(n) n T4 (n) then
D' = D' and as T+(n) is a subgroup we have D' e T, (n). But D' is lower triangular so D must be
diagonal, and therefore D = D", so using orthogonality, D? = 1. So D has diagonal entries +1. As
D e Ts+ (n) it has positive entries on the diagonal therefore D = [ as required.

Corollary GL(n,R) is homeomorphicto O(n) x T+ (n).

Proof The homeomorphisms are constructed as follows: A € GL(n,R) is mapped to (B,C) and
(B,C) e O(n) x T4 (n) is mapped to BC. These are clearly mutual inverses. The map (B,C) — BC
1S continuous because matrix multiplication is continuous — the entries of BC are polynomials in
the entries of Band C. The map A — (B,C) is also continuous for a similar reason.

Note T, (n)is homeomorphic to R""+""2_A matrix in T+ (n) has n(n—1)/2 entries off the diagonal
and each of these can be an arbitrary element in R. There are n entries on the diagonal and each
of these is an arbitrary element of R, so that T« (n) = R"™+"2 x (R4)". But R+ is homeomorphic
to R (under log and exp as inverse homeomorphisms).

So GL(n.R) is homeomorphicto O(n) x R™"+")2,

Exercise The space SL(n,R) is homeomorphic to SO(n) x R +"-272,
Examples The space GL(1,R)is R\ {0}, O(1)is {£1} and so one can see directly that GL(1,R)
is homeomorphicto O(1) x R.

The group O(2) is the union of SO(2) and another coset of SO(2) but SO(2) is homeomorphic
to the circle S' = {ze C | ||z]| = 1}, so O(2) is homeomorphic to the union of two disjoint copies
of S' and GL(2,R) is homeomoarphic to the union of two disjoint copies of S' x R3‘.

Exercise Show that the group GL(n,R) for n > 1 is not the direct product of its subgroups O(n)
and T, (n).
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Exercise Show that GL(2,R) has many subgroups of order three but that O(2) x T, (2) has only
one such subgroup. Deduce that there is no isomorphism between GL(2,R) and O(2) x T, (2). [t
is true that GL(n,R) is not isomorphic to O(n) x T, (n) for any n = 2, but the proof is more difficult
for n = 3. For n = 3. show that the centre Z of G = GL(n,R) consists of the scalar matrices and
that G’Z has no proper normal subgroups for n odd and only one such for n even. The group
O(n) x T, (n) moduloits centre has several proper normal subgroups.}

Affine Subspaces and Affine Independence

It is often necessary to consider lines, planes, etc. that do not pass through the origin. Linear
subspaces always contain the origin but their cosets (in the additive group) do not and they are
called affine subspaces. However the affine subspaces have an intrinsic definition.

A subset A of R" is an affine subspace if \a + pbe Aforalla, b e A and all A, u € R such that
A + p = 1. A straightforward induction shows that the following is an equivalent condition:

g}\ia,eAforaHa.eAand_zk:‘ =1,

If V< R"is a linear subspace then it is easy to check thatthe setV + x = {v+x|veV} isan affine
subspace of R" for any (fixed) x e R". Every affine subspace A is of this form, because if a ¢ A and
V = A - a ={x-alx ¢ A} then V is a linear subspace of R". Let A\ ¢ R and
x—aeVthentocheck that \(x—a) e Vwe mustcheck that A (x-a) + ae Abut

A(x—a) +a=Ax+ (1-\)a
andx,aeA.If x—a, y-aeVthen(x-a) + (y—a) e Vbecause
(x-a)+ (y-a) +ta=x+y-a

which is a linear combination of elements of A, the sum of the coefficients being 1 + 1 —1 = 1
sox+y—aeA.
Exercise Ifa,beAandAisan affine subspace, showthatA—a=A-b.

If Ais an affine subspace, its dimension is the dimension of the linear subspace A—a of R".

if Xc R"is any subset, iis affine span Aff(X) is defined as

Aff(x) ={E xxi | xie X, £ N =1}

It is easy to check that Aff(x) is an affine subspace of R" and that it is the smallest affine subspace
containing X.

A set X = {xo, Xy, ..., X} is affinely independent if Eu AiXx, = 0 holds with ;’0 AN=0
only if \g = Ay = ... = X\, = 0. It is easily checked that {xq, X4, ..., x.} is affinely independent
ifand only if {xy—Xg, Xo—Xo, - . .. . X,~Xo} is @alinearly independent set.

If X = {xo, X4, . . ., X} is affinely independent then Aff(X) has dimension r and X is called an
affine basis for Aff(X). Note that an affine basis for an r-dimensional affine subspace has r + 1
elements. If {e4, €5, ..., €] is a basis of a linear subspace V then an affine basis for V is
{0,e,€3...,€}.

An affine subspace H of R" whose dimension is n — 1 is called a hyperplane. If H is a linear
hyperplane of R", then there is a non-zero x € R" such that H = {x}*. This is because one can
choose an orthonormal basis for H and extend it (by a vector x) to an orthonormal basis for R";
it is then easy to check that H = {x}*. Hyperplanes arise as the perpendicular bisectors of line
segments.

Lemma Ifa,be R"witha #b,thenB = {x|d(x,a) = d(x,b)} is a hyperplanein R".

Proof ltis clearthat (a+b)/2 e B so we need to show that H = B - (a+b)/2is an (n—1) dimensional
linear subspace. If c = (a—b)/2, it is easily checked using the translation invariance of distance that
H is the set {x|d(x,c) = d(x,—c)}. If ¢, e, €3, ..., e, is an orthogonal basis for R", then



€5,€3,...,e,isabasisfor H.
If H is any hyperplane in R" and x € R, then x can be written uniquely in the form y + z where
yeHandz L H.

X

y is the cerpendicular
projection of x onto H.

Mc e algebraically, let a € H, then H — a is a linear hyperplane, so H—a = {b} for some b. There
is a unique expression
x—a=Ab+cwhereceH-a.
Lety=c+a,z=Ab,thenyeHandz L H.
Itremains to check the uniqueness. Suppose
Yi+zi=yo+2, with yq,¥.€eH, 2z, zoeH:
Thenz,—2z; =y,;-Yy,eH-y,andz,—z,eH-y, hencez, =z, and soy, = ya.
IfA c R",B ¢ R™are both affine subspaces, a map f: A—B is an affine map if
f(\a+pub) = Af(a) + wf(b)fora,pe Aand\ + p=1.
An affine map is therefore one that takes straight lines to straight lines because the straight line
through the points a, b is the set {Aa+pb|\,ieR, A\+pn=1}. Ifa € A, b € B then A-a and B-b are
linear spaces; if L: A-a— B-bis a linear map then the map A, : A— B defined by
A (x)=L(x-a)+b
is an affine map. When checking this note carefully that L is only defined on A — a. All affine maps
arise in this manner as we now show.
Lemma Iff: A— Bis an affine map then the map L;: A~a — B—f(a) defined by
Li(x) = f(x+a)—f(a)

is alinear map. The map fis obtained from L, by the previous construction.
Proof We need to check that Li(x+y) = Ly(x) + Li(y) and that Li{(Ax) = AL¢(x). To check the first
we note thatx + a,y + a, ae Aand that x + y + a = (x+a) + (y+a) —ais a combination of them,
the sum of whose coefficientsis 1. So
Lix+y) = f(x+y+a)—f(a)

= f(x+a) + f(y+a)—f(a)—f(a)

= L(x) + Li(y).
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Ly(Ax) = f(Ax+a)—f(a)
= f(A\(x+a)+(1-N)a)—f(a)
= NM(x+a) + (1-N)f(a) —f(a)
= ALy(x).
IfL = Ly, itis easy tocheck thatif one takes b = f(a) thenf = A,.
Animportant special case is the following.
Coroliary Iff: R" — R"is an affine map then there exists a e R" such that the map L: R" — R"
defined by L(x) = f(x) —aislinear, so f(x) = L(x) + a.

Isometries of R"

We have already seen that translations T,: R" — R" defined by T,(x) = x + a and orthogonal
transformations T: R"— R” which are linear and satisfy Tx.Ty = x.y are both examples of isometries
of R". We will show that all isometries are combinations of these two basic kinds. In fact isometries
are affine maps. Thefirst stepis
Theorem 2 An isometry f: R" -—» R" is uniquely determined by the images fa,, fa,, . . . fa, of a
setag, a4, . . . a,of (n+1) (affinely) independent points.

Proof Let ¥, g be isometries witt fa; = ga, for 0 < i < n. Then g~'f is an isometry with g~'fa, =a,.
Let T be the translation defined by Tx = x — ag and let b; = T(a;) for 0 < i < n. Clearly, by =0,
and the set {by, by, . .., b,} forms a basis for R". We will show that h = Tg™'fT™" is the identity,
and this shows thatf = g asrequired.
Clearly hb, = b; for 0 < i < n, so if y = hx we have that d(x,0) =d(y,0) and d(x,b;) = d(y,b;) for
< i < n because h is an isometry. Hence x.x = y.y and (x-b;).(x-b;) = (y-b)).(y-b) for
=< i < n. By expanding these last n equations and manipulating one gets that x.b; = y.b; for
<i=n. Asby by, ..., b,is abasis, one has x.z = y.z for every z ¢ R", hence x =y, proving
that his the identity.
This proof shows that a point in R" is uniquely determined by its distances from n + 1 independent
points. Note that, in general, a point x is not uniquely determined by its distances from n
independent points.
Theorem 3 |If {ay, a,... a,} and {by, by, ... b,} are two sets of (n+1) independent points in
R" with d(a,.a) = d(b,b) for 0 < i, j < n then there is an isometry f: R — R" with fa; = fb, for
o<i<n.
Proof Using translations we can clearly assume that a; = by = 0. Then {a;, @, . .. a,} and
{bs, bz, ... by} are bases for R", and it is easy to see that the hypotheses imply that a;.a, = b;.b,
for all i, j. Let g be the unique (non-singular) linear transformation such that ga, = gb; for
1<i<n.Letx—y=3\a,thengx—gy = g(x—y) = 2 \,b; by the linearity of g. So

d(gx,gy)® = X AAbib; = 2 \Aa,.a; = d(x,y)%
Hence gis alinearisometry. The required f is the composition of g with a translation, so itis affine.

We have already proved on page 4 that every linear isometry is orthogonal. Theorems 2 and
3 therefore combine to show that if f is an isometry of R" then f(x) = Ax + a where A € O(n) and
a e R" so that every isometry is the composition of an orthogonal transformation and a translation.
Hence every iscmetry is affine.

Exercise |f X< R"isanysubsetandg: X — R"is anisometric map, show that there is an isometry
f: R" — R" such that f|X is g. If the affine subspace defined by X has dimension n - r, prove that
the set of such isometries forms a coset of O(r).

1
1
1
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We will now show how every isometry can be written as a product of reflections. This gives an
alternative approach to understanding isometries and yields independent proofs of some of our
previous results.

Definition IfHisahyperplaneinR", reflection in His the isometry Ry, of R" defined by
Ru(x)=y-2 ;

where x =y + zwithy e Hand z_L(H-y) using the decomposition given on page 8.

Note that Ry? is the identity and that Ry, leaves every point of H fixed. If H is the perpendicular

bisector of ab, Ry interchanges aandb.

Example InR?3 regardH as a two-sided mirror, then Ry(x) is the mirrorimage of x.

Exercise If0eH,thatisif His alinear hyperplane, show that Ry, is orthogonal. If a is a unit vector
perpendicular to H, show that Ryy(x) = x—2(x.a)a.

Theorem 4 Anyisometry f: R” — R" that is the identity on an affine (n—r)-dimensional subspace
A (that is, fa = a for each a e A) can be expressed as the product of at most r reflections in
hyperplanes that contain A. Any isometry can be expressed as the product of at most (n+1)
reflections.

Note The last sentence can be regarded as a special case of the first if one makes the (usual)
convention that the empty set has dimension—1.

Proot Choose (n-r+1) independent points a,, a, ..., an.r in A and extend them to a set
ag, ay, ..., a, of (n+1) independent points in R". Let b; = fa, so b; = 3, for 0 <i < n-r. Asfis
an isometry, d(a, a) = d(b;b) so if H is the perperdicular bisector of a,_.1b,_,. it is clear that
a, e Hfor 0 <1< n-r. The idea now is to consider Ryf, this is the identity on an (n—r+1) dimensional
affine subspace and so one can use induction on r to give the required result. In detail:
Ruf = Ru. ... Ry, where H; ... Hs are s hyperplanes (s<r-1) containing A and a,_,.,, then f =
RuRu. . . . Ry is a preduct of at most r reflections in hyperplanes containing A. To prove the last
sentence of the theorem, let H be the hyperplane bisecting af(a) for some a € R". Then Ruf fixes
a 0-dimensional affine subspace, and so is the product of at most n reflections. So f is the product
of atmostn + 1 reflections.



