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Preface

This book is written for students in a first course in linear algebra at the
sophomore level and is intended primarily for mathematics majors, engineers,
science students, and business and economics majors.

The question may properly be asked: Why another textbook in linear
algebra? I believe that many of the present books in this subject are too
abstract, others are computationally oriented to the point that the mathe-
matics is ignored, and many, if not most, have omitted the applications of
linear algebra. I have written this book with the idea of achieving a balance
among computational skills, applications, and the theory of linear algebra.
At the same time I have tried to keep the reading level of the text at a sopho-
more or even a freshman level.

Chapters 1 and 2 are geometric in nature. The discussion begins with
line vectors. The operations on line vectors are used to motivate the defini-
tions of operations on 2- and 3-tuples and these definitions are extended to
n-tuples. Proofs in the first two chapters are less rigorous and are geometri-
cally oriented. Much of the material in the first two chapters may have
already been covered in a calculus and analytic geometry course. 1 have
started with this material because I believe it is the least abstract and provides
the most concrete path to the ideas of linear algebra.

Chapter 3 discusses reduction methods for solving systems of linear
equations and also the algebra of matrices. Numerous applications are
integrated with the material. Chapter 4 is a short chapter on determinants. I
believe that the method I have chosen for defining determinants, which
avoids permutations, leads more easily to the theory and also to the tech-
niques for calculating determinants.
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Xii  Preface

Chapter 5 deals with the theory of abstract (real) vector spaces. The
reader has already seen numerous examples of vector spaces in the first three
chapters. Various function spaces are introduced so that the reader will
realize that there are important vector spaces other than n-tuples. Proofs of
most of the theorems are given but are often illustrated first with an example.
This gives the instructor the option of discussing the example or the proof of
the theorem, which largely imitates the example.

Chapter 6 discusses linear transformations and their relationship to
matrices. Chapter 7 discusses eigenvalues and eigenvectors and the diago-
nalization process. Chapter 8 discusses the general inner product. Applica-
tions are included in Chapters 6, 7, and 8.

I have tried to motivate concepts through examples, applications, and
other means. For instance, I show that the definition of matrix multiplication
arises in a natural way as the result of a certain substitution process involving
systems of linear equations. This is what led Arthur Cayley to the definition
of matrix multiplication in 1858.

Over 165 examples are given in the text. These examples include appli-
cations and methods for solving problems. Answers to all the odd-numbered
computational exercises are given at the end of the text. The answers to the
even-numbered problems are available to instructors in a separate answer
book.

It is assumed that the reader has a knowledge of precalculus mathemat-
ics including the idea of a function. (A brief review of functions is offered in
Section 6.1.) With the exception of some examples and problems (that can
be omitted) and the final section of the text, which requires a knowledge of
integration techniques, a knowledge of elementary calculus is not needed.

This book is an outgrowth of lecture notes that were used during the
years 1974-1977 at the University of Wisconsin-Superior. I have taught all
the material at a leisurely pace in five semester hours and believe that the
entire text can be covered in four semester hours. By a judicious selection of
topics, most of the book can be covered in three semester hours. Excluding
Sections 4.3, 6.8, 7.5, and 8.3 (which are optional) there are 39 sections. Most
of these sections can be covered in a single class period. If a shorter course is
desired, Sections 2.4 and 2.5 could be omitted as well as some of the applica-
tions. Various options are possible, some of which follow:

1. Start with Chapter 1 and continue through the text. This would work well
if the text is used concurrently with or prior to a third semester of calculus.

2, If the text is used following a third semester of calculus, the instructor may
wish to cover the first two chapters rapidly or omit Chapters 1 and 2
altogether (allowing students to review this material on their own) and
start with Chapter 3.
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3. Start with Chapter 3 and continue through Section 3.3; then pick up
Chapter 1 and Sections 2.1-2.2, leaving the remainder of Chapter 2 until
just before Chapter 8.

I gratefully acknowledge the helpful comments and suggestions made
by the reviewers: Professor Jan Jaworowski of Indiana University, Professor
Jack Goldberg of the University of Michigan, and Professor Robert Weber
of Yale University. I am especially appreciative for the many suggestions and
the encouragement provided by Professor David E. Kullman of Miami
University, Oxford, Ohio, and for the constructive criticism and perceptive
comments of Professor Robert E. Mosher, formerly of California State
University at Long Beach. Both Professors Kullman and Mosher carefully
read the entire manuscript and are responsible for many improvements in
the text. I wish also to thank my friend and colleague, Professor Robert E.
Dahlin at the University of Wisconsin-Superior, who provided helpful com-
ments and with whom I have had many mathematical discussions.

For typing the first draft I wish to express appreciation to Grace Collins
and Hondoko Tingsantoso. I also wish to thank John J. McCanna, regional
editor for Prentice-Hall, who gave me encouragement when I first started
this project. Finally, I express appreciation to my mathematics editor, Harry
H. Gaines; my production editor, Eleanor Henshaw Hiatt; and the produc-
tion staff at Prentice-Hall.

Francis G. FLOREY
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Line Vectors
and
Coordinate Vectors

Linear algebra is, in a sense, a study of vectors. From a mathematical point
of view, vectors come in many different forms, but all must share certain
common properties. Probably the first idea of vector that most of us are
exposed to is the notion that a vector is a quantity that has a length and a
direction. It is with this informal idea that we begin. As we progress further
through the text, we shall give a precise mathematical definition of vector. It
will become clear that our initial introduction to vector as a quantity having
length and direction is only one example of a much broader classification of
objects that we shall call vectors.

1.1 VECTOR ADDITION
AND SCALAR MULTIPLICATION

In science, physical quantities such as force, velocity, displacement (movement
of a particle from one point to another), and acceleration are described by
a magnitude and a direction. The term vector is used to identify such a quan-
tity.

Geometrically, a vector can be represented by a directed line segment or
arrow. The length of the line segment denotes the magnitude of the vector;
the direction of the arrow denotes the direction of the vector. For example, a
force of 8 1b could be represented by an arrow 8 units long in the direction of
the force (Figure 1.1).

One can draw many arrows 8 units long and in the same direction as
the force. All such directed line segments represent the same vector. As

1



2 Line Vectors and Coordinate Vectors Chap. 1

Figure1.1  An 8-pound force

geometric entities they are different sets of points, but as vector representa-
tions they are equal.

Definition 1.1. Two directed line segments (arrows) of nonzero length repre-
sent the same vector if and only if they have the same length and the same
direction. The term line vector will also be used to refer to the vector repre-
sented by a directed line segment.

In the text we shall denote a line vector by a letter with a bar over it,
for example, ¥ denotes the “vector v” (see Figure 1.2). If the tail and head of

v are points 4 and B, respectively, we shall also write 5 = 4B.

\ 4
v
\ Figure 1.2  Equality of vec-
u torsv=AB=1u

There are two equivalent procedures that can be used for adding vectors.
As Figure 1.3 suggests, from the head of # draw &. The vector 7 -+  is the
vector from the tail of # to the head of 4. This method of vector addition is
called the triangle rule of addition.

An alternative but equivalent procedure is the parallelogram rule for
addition (Figure 1.4). Using the parallelogram rule to obtain # - &, we draw
representations for # and ¢ from the same point (the tails of % and 7 coincide),
and then complete the parallelogram. The diagonal drawn from the common
point represents @ -}- 4.

It is clear from Figure 1.4 and the triangle rule that vector addition is
commutative, that is,

Addition of Vectors

i+o=75+4



Sec. 1.1 Vector Addition and Scalar Multiplication 3

"“'”'EM v

Figure 1.3 Addition of vectors (triangle rule)

”*"jm*

<)

Figure 1.4 Addition of vectors (parallelogram rule)

The zero vector, denoted by0,isa vector of 0 length. We do not assign
a direction to §, Note that

T+0=0+¢=g35
by the triangle rule for addition.

For any vector § we define — (read “minys »” or “the opposite of y”
or “the additive inverse of v”; see Figure 1.6) to be the vector such that

v

<

180°

N\ >

=)
|

Figure 1.5 Dirg = ~dir 7,



4 Line Vectors and Coordinate Vectors Chap. 1

<

Figure 1.6 The additive inverse of ¥

=& ®

=]l =1i%ll
and dir —3 = —dirv
(If 5 = 0, then —0 = 0.) From the triangle rule for addition it is clear that
G+ —5=0

If line vectors @ and ¢ have representations that are equal in length and
parallel, then either # = & or # = —&. We shall assume that we can tell from
the directions that the arrows point whether or not i = v or i = —7p.

Example 1.1. In the parallelogram below, decide (a) which arrows represent
the same vector, and (b) which ar-
rows represent opposite vectors.

Solution: (a) Line segments

AB and DC are opposite sides of

the parallelogram. Therefore, ||A_1§ It

= || DC|| and 4B and DC are paral-

A lel. From the figure, dir AB = dir

o DC. Therefore, AB = DC.

(b) Line segments BC and DA are opposite sides of the parallelogram

So BC and DA are parallel and ||BC =1 DA [l. From the figure, dir BC
— —dir DA. Hence BC — —(DA)

Since every line vector has an additive inverse, we can define subtraction
of vectors by

U—v=1iu-+(—9)

Example 1.2. Given representations for # and ¥, use the definition of subtrac-
tion and the triangle rule for addition to draw # — 3.

/

&



Sec. 1.1 Vector Addition and Scalar Multiplication 5

Solution
1. Draw @i = AB and ¥ = AC from the same point 4.

2. Draw —4.
3. Using the triangle rule for addition, draw # — ¢ = # -+ (—%).

Example 1.3, Show that # — ¢ is the vector which when added to ¢ is 7.

Solution
1. Draw representations for # and ¢ from some common point 4. Let# = AB
and 5 = AC.

2. Complete the triangle by drawing w = CB.

By the triangle rule for addition, ¥+ + w = . Writings + w as w + &
and adding —4 to both sides, we have (W + @) + (—%) = # + (—%). Reasso-
ciating parentheses (Problem 2, Exercise 1.1) and using the definition of
subtraction, we have

W+ @+ (—o)=u—7

Since 4 + (—9) =0 and w + 0 = W, we get w = # — 4.

Note: The reader should compare the result of Example 1.2 with the
result of Example 1.3.
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Exercise 1.1

In the problems that call for drawings the reader will find that a transparent
ruler is convenient for drawing parallel segments.

1. Letu = 5, D= D?, w = CTB‘, and X = lﬂ: as the figure indicates. Assume
that ABCD is a parallelogram with AD parallel to BC.
(a) Explain why AD = B?
(b) Explain why ¥ = —4.
(c) Write AC in terms of # and o.
D (d) Write A_é in terms of X and w.
(¢) Find thesums X + @, (X + @) + o,
and (X + &) + ¢) + w, and ex-
press the answers in terms of the
vertices of the parallelogram.

2. Show geometrically that vector addition is associative; that is,
@+ +w=i-+@+w
Hint: Use the triangle rule for addition.

3. Label the unlabeled arrows in the figure below in terms of 4 = a and w =

ﬁ. You may assume that segments which look parallel are parallel. All arrows
have their tails at the point P in the center of the parallelogram.

v

(b) Would it be appropriate to label the vector from the tail of z to the head of
Xasa—+v+w+ X7 Why?
5. In each figure two of the vectors are labeled # and 5. Use these labels to label
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10.

11.

each of the vectors called for. You may assume that segrhents that look parallel
are parallel. C
(a) BC =

CB =

—

CA =

() CD =

_ u

. (@) If dir 4 = —dir& and dir (¢ + &) = dir o, how does ||7|| compare with

[1a|}?
(b) If || 7|| < li]| and dir 4 = —dir &, what is dir (@ + ©) ? (Give your answer
in terms of either dir & or dir 4.)

. Given line vectors #, 7, and w as in Figure 1.7. Draw (a) & + 4;(b) (@ + ¥) + w;

©@v+w;(d)a+ @+ w).

Figure 1.7

. For line vectors @, ¢, and w as in Figure 1.7, draw (@) 2 — 7; (b) 5 — w; (¢)

i — w; (d) how is the line vector in (c) related to the vectors in (a) and (b)?

. Draw a triangle with sides @, b, and @ + b.

(@ Whyis|ia + bl <|lall +[|6]17 _

(b) For arbitrary line_vectors a and b, under what condition(s) is it true that

la+ &0 =lall +11511?

Draw a triangle with sides &, b, and @ — .

(a) Why is [|la|l —||&]l]] <ll@ — 51| (The outside vertical lines on the left
side of the inequality denote absolute value.)

(b) For arbitrary line vectors & and b, under what condition(s) is it true that
fall —ilbll =lia — b||?

Verify that —(—%) = 4 by showing that the two vectors have the same length

and the same direction.



