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Foreword

This book is designed to provide an introduction to the foundations of
Einstein’s theory and also to survey the questions it raises, its concepts
and its methods. Because of the rapid development of relativity physics
in recent years it has been impossible to avoid some restriction and selec-
tion of the subject matter; it is hoped, however, that the gap can be filled
as far as possible by means of the bibliography at the end of every major
section. Several rather more exacting sections, which the reader may
omit at a first reading, are denoted by an asterisk. The reader is assumed
to be familiar with theoretical mechanics, electrodynamics and special
relativity. The basic ideas of Riemannian geometry which are necessary
for the theory of general relativity are described in the first chapters.

My thanks go to all colleagues of the Jena research group, led by
Professor Schmutzer, with whom and from whom I have learnt the
theory of relativity, and to all authors of ‘books and articles, whether
mentioned by name or not, whose ideas this book contains. I am especially
indebted to my colleagues Dr. G. Kluge and Dr. D. Kramer for numerous
critical remarks on the form of the mdhuscript, and to Professor Dr.
E. Schmutzer and Dr. F. Gehlhar who suggested changes. I also have to
thank Frau U. Kaschlik for a careful typing of the manuscript, Herr Th.
Elster for help with the corrections, and not least the publisher for a
pleasant collaboration.

Jena 1977 , HANS STEPHANI
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Editor’s Preface

Several years ago I was asked by an astrophysicist to recommend a
textbook on relativity which, although physically oriented, contained
a clear, unbiassed description of mainstream relativity. On the same day
Cambridge University Press sent me Dr Hans Stephani’s Allgemeine
Relativitatstheorie to review, thus answering the astrophysicist’s question.
This book is a translation of the first (1977) edition with all of the amend-
ments and corrections of the second (1980) edition included. In a few
places I have added comments in footnotes. Further, the bibliography has
been updated to 1980/81, and where possible English translations have
been cited.

JOHN STEWART



Notations, conventions and important
formulae

Minkowski space: ds? = 1,dx“dx® = dx? + dy* + dz* — c*dt”.
Riemannian space: ds? = g,,dx“dx” = — ¢*d7?.
9=9ub 9" == 5.
e-pseudo-tensor: e™; g!23% = ey oy R
Eaned = — 209297 — 9290
Dualisation of an antisymmetric tensor: F* = J¢*™F, .

Christoffel symbols: ' = 29*(Gy » + Tonm — Imnp)

Covariant derivative: DT*/Dx" = T* =T +17 T"
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Parallel transport along the curve x(1): DT/DA = T* dx"/dA = 0.
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Fermi- Walker transport:—D—; o “(E S A ) =0

Geodesic equation:

Lie derivative in the direction of the vector field a*(x):
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£T, = T, d+Td,=T,d+Td,.

Killing equation: {;, + ¢, = %gi" =0.
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Divergence of a vector field: @', = —==(/ —94');
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Xvi Notations, conventions and important formulae

Curvature tensor: 4, . — d,,,.. = a,R", .
Rhmsq o rr':lq.s ST F?ns.q + rzsr::q 1y rf:q r;s‘
R, = %(gaq_,,ls ¥ Ops.aa — Yasimg — Imquas) + NON-linear
terms.
Ricci tensor: qu == R’msq = — R‘mqs; R™ =R.
R

Field equations: G,, =R, — >0 = Lo

Perfect fluid: T, = (u + p/c)u,u, + pg,,.
2

Schwarzschild metric: ds? = . . L + r¥(d9? + sin? 9d¢?) -
1 —2M/r

— (I — 2M/r)c2de>.

Robertson- Walker metric: d§: = K?(ct) x

dr? 2102, w52 2 AT,
+r*(d9° + sin? 9dp?) | — c2dr2.

1 —er?
Hubble constant: H(cr) = K/K.
“Acceleration parameter: g(ct) = — K K/K2.
k=207 x10"*8g " 'em™1's2, ¢cH =55 km/s Mpc,
2Mg,.,, = 0.8876 cm, 2Ms,,, = 2.9533 x 10° cm.
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Introduction

The general theory of relativity came into being historically as an extension
of the special theory of relativity. However the questions to which it is
addressed are somewhat incompletely described by its name. As in every
living, evolving science there is no agreement amongst scientists as to
which of the viewpoints and ideas discussed were particularly important
when the theory was in its infancy, which are absolutely necessary for a
logical structure, or which will prove fruitful for its future development.
Three groups of questions, however, played a special role and led ultimate-
ly to the general theory of relativity.

(1) For a description of nature and its laws one should be able to use
arbitrary coordinate systems, and in accordance with the principle of
covariance the form of the laws of nature should not depend essentially
upon the choice of the coordinate system. This requirement, in the first
place purely mathematical, acquires a physical meaning through the
substitution of ‘arbitrary coordinate system’ by ‘arbitrarily maoving
observer’. The laws of nature should be independent of the state of motion
of the observer, as, analogously, they are the same in the special theory of
relativity for all inertial systems, that is for all observers moving with
constant speed relative to one another. To this group belongs also the
question, raised in particular by Ernst Mach, of whether an absolute
acceleration (including an absolute rotation) can really be defined mean-
ingfully, or whether every measurable rotation implies a rotation relative
to the fixed stars (Mach’s Principle).

(2) The Newtonian theory of gravitation is inconsistent with the special
principle of relativity. In it gravitational effects propagate with an infinitely
large velocity. A new, better formulation of the field equations of gravitation
should therefore be found, which includes also the influence of gravity
upon other physical processes and which agrees with experiment.

(3) In astrophysics and cosmology large masses are involved; gravitational
forces dominate short-range nuclear forces. Thus a theory-of gravitation
has to be found which correctly reflects the dynamical behaviour of the
whole Universe and which at the same time is valid for stellar evolution.



2 Introduction

The general theory of relativity began with the formulation of the funda-
mental equations by Albert Einstein in 1915, followed by a series of
articles on the foundations of the theory and on its possible experimental
confirmation. In spite of the success of the theory (precession of the peri-
helion of Mercury, deflection of light by the Sun, explanation of the cosmo-
logical redshift), it has retained for a long time the reputation of an esoteric
science for specialists and outsiders, perhaps because of the mathematical
difficulties, the new concepts and the paucity ofapplications (for example in
comparison with quantum theory, which came into existence at almost
the same time). Through the development of new methods of obtaining
solutions and the physical interpretation of the theory, and even more
through the surprising astrophysical discoveries (pulsars, cosmic back-
ground radiation), and the improved possibilities of demonstrating
general relativistic effects, in the course of the last twenty years the general
theory of relativity has become a true physical science, with many associat-
ed experimental questions and observable consequences.

The general theory of relativity is the theory of the gravitational field
the description of its language and concepts, and its methods and conclu-
sions, form the main content of this book.

Modern theoretical physics uses and needs ever more complicated -
mathematical tools - this statement, with its often unwelcome consequ-
ences for the physicist, is true also for the theory of gravitation. The lan-
guage of the general theory of relativity is differential geometry, and we
must learn it, if we wish to ask and answer precisely physical questions.
This book therefore begins with seven chapters in which the essential
concepts and formulae of Riemannian geometry are described. As far as
possible, mathematical discussions are physically motivated, sometimes
by the use of concepts and ideas which can not be introduced precisely
or really understood until later.

1 The force-free motion of particles in Newtonian mechanics
1.1 Coordinate systems

In theoretical mechanics one usually meets only a few simple coordinate
systems for describing the motion of a particle. For the purposes of
mechanics one can characterise the coordinate system best via the speci-
fication of the connection between the infinitesimal separation ds of two
points and the difference of their coordinates. In describing the motion in
three-dimensional space one chooses Cartesian coordinates x, y, z with

ds*=dx? +dy? + dz2, (L.1)



I Force-free motion in Newtonian mechanics 3

cylindrical coordinates ¢, @,z with

ds? = dg? + 0?dg? + dz? (1.2)
or spherical coordinates r, 3, @ with
ds? = dr? + r2d9% + r? sin? 3d¢>. (1.3)

If the motion is restricted to a surface which does not change with time,"
for example a sphere, then one would use the corresponding two-dimen-
sional section (dr = 0) of spherical coordinates

ds? =r2d92 + r? sin® 3do?. (1.4)

For other arbitrary coordinate systems ds? is also a quadratic function
of the coordinate differentials:

ds? = ga,,(x”)dx“dx”; a pv=123. (1.5)

Here and in all following formulae indices occurring twice are o be
summed, from one to three for a particle in three-dimensional space and
from one to two for a particle on a plane.

The form (1.5) is called the fundamental metric form; the position-
dependent coefficients g,, form the components of the metric tensor. It
is symmetric: g,, = g;,- The name ‘metric tensor’ refers to the fact that
by its use the quantities length and angle which are fundamental to
geometrical measurement can be defined and calculated. The displace-
ment ds of two points with coordinates (x', x?) and (x! + dx!, x* + dx?)
is given by (1.5), and the angle y between o infinitesimal vectors dV'x*
and d®x* diverging from a point can be calculated as

g lel)xad(Z)xﬂ
a,

Y= :
T d‘}”x‘r \/?Md‘z’x“ d@®x

cos (1.6)

& =const
N

Fig. 1.1. Measurement of lengths and angles by the use of the metric tensor.



4 . Introduction

Formula (1.6) is nothing other than the familiar vector relation
ab = |al |b| cos (a, b) applied to infinitesimal vectors,

If the matrix of the metric tensor is diagonal, that is to say g, differs
from zero only when « = B, then one calls the coordinate system ortho-
gonal. As (1.6) shows, the coordinate lines x* — constant are then mutually
perpendicular.

If the determinant of 9,5 18 non-zero, the matrix possesses an inverse
matrix g#* given by

gaﬁg”“ =0 =g~ (L.7)

The immediate significance of the fundamental metric form (1.5) for

mechanics rests on its simple connection with the square of the speed of the

particle:
‘ds'\? dx* dx*
2 = — —3 —_—
< (dt) a0 a1 ar (L)
which we need for the construction of the kinetic energy as one part of the
Lagrangian. ?

1.2. Equations of motion

We can obtain the equations of motion most quickly from the Lagrangian
L, which for force-free motion is identical with the kinetic energy of the
particle

L g0 s dadlixd ol omes ot by 1.9
b=3v = 30ug 4 = 395 19)
The corresponding Lagrange equations (of the second kind)
d 0L 5@k,
. —— = 1.10
de-a5 - iax® 2L

are easily set up. If we write partial derivatives with respect to the coordi-
nates in the symbolic manner

P |

)= () (L11)

then ’

oL JdL

== 2 g == ﬂ v 'ﬂ 1 12
ax-v mgavx ’ axv L,v 2 gaﬁ.vx X% ( 5 )

and from (1.10) it follows immediately that

GuX" + g, gX% — §ga,,vxaxﬂ =90, (1.13)
If we first write the second term in this equation in the form

gav"ﬂx'“x'ﬂ = %(gav,ﬂ i Gpv,a)x.axﬂ’ (1.14)



1 Force-free motion in Newtonian mechanics S

then multiply (1.13) by g** and sum over v, then because of (1.7) we obtain

X* 4+ rexex? =0, (1.15)
where the abbreviation

Ly =39"Gap + Gpv — Yap) (1.16)
has been used.

Equations (1.15) are the required equations of motion of a particle. In the
course of their derivation we have also come across the Christoffel symbols
ry,, defined by (1.16), which play a great réle in differential geometry.
As is evident from (1.16), they possess the symmetry

R (1.17)

and hence there are eighteen distinct Christoffel symbols in three-dimen-
sional space, and six for two-dimensional surfaces.

On contemplating (1.15) and (1.16), one might suppose that the Chris-
toffel symbols lead to a particularly simple way of constructing the
equations of motion. This supposition is, however, false; on the contrary,
one needs the very equations of motion in order to construct the Christoffel
symbols. We shall illustrate this method by means of an example. In
spherical coordinates (1.3), x! =r, x? = 3, x> = ¢, the Lagrangian

L=%(i°2 + 7292 + 2 sin? 9¢:%) (1.18)
implies the following Lagrange equations of the second kind:
F—r3%—rsin? 8¢% =0,
9'+§i-9—sin900s.9¢2=0, (1.19)
and ¢+§i‘¢+200t9¢9=0.
Comparison with (1.15) shows that (noticing that, because of the symmetry

relation (1.17), mixed terms in the speeds r, 9, ¢ always occur twice) only
the Christoffel symbols

ri,=-r, rj; = =rsin*$§,

1 : I
r:,=r2 = r2, = —sin9cos9, (1.20)

1
1“23=I'§,=;, r3,=r3, =cotd

differ from zero. :
In the case of free motion of a particle in three-dimensional space the

W



