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Preface

This manual resulted from efforts to make simple data treatment and
experimental design methods palatable to undergraduates in analytical
chemistry. Most of the topics are treated in varying degrees in standard
analytical texts. The methods usually, however, are sketchy or excessively
theoretical.

In a two-course undergraduate sequence in quantitative analysis, one
can use all the methods of the manual in laboratory work. But with in-
creasing emphasis on quantitation in freshman chemistry, the manual
should find application as an adjunct there. In fact, I judge it as about the
minimum level any chemistry major should master and, to attain this
level, more than the efforts of the analytical teacher are required.

Sir Ronald Fisher may be considered the father of small-sample statis-
tics. If he wasn’t the father, then he was the midwife. His book, Statistical
Methods for Research Workers, was published in 1925. It introduced
researchers to statistics as a tool in experimental design and interpretation.
Today, the methods of statistics are increasingly used in laboratory work,
but to many workers the estimated population standard deviation still
represents the zenith of statistics. Chemists may not be slow to take a
chance, but they seem slow to use it. But electronic computers are changing
that.

The manual is meant to be one small step man may take into the world
of using chance. The material is somewhat cookbookish. It was meant to
be. But once a person becomes familiar with ideas and terms covered in it,
he can progress to an increasing understanding of statistics and experi-
mental design. This can be by self-study or by attending courses.

Statistics is the sort of tool that a person should become more proficient
in by use. But one can’t take a series of courses in everything and I think
a series in statistics is precluded for most chemists. One can, however,
continuously build on a small foundation. There are many excellent books
for this, as indicated in Chapter 1. After a certain proficiency is attained,
primary journal articles are more useful than books. Analytical Chemistry
reviews these biannually; the reviews are good secondary sources to learn
of new and useful experimental designs.

Tabulation of data at the various stages of accumulation and assimi-
lation makes statistical methods easier to use. For this reason, we include

\4



vi Preface

blank tables at the end of many chapters. Although tabulations of data
occur in the explanatory examples, blank tables make it easier for students
to apply the methods to their laboratory problems. These, and what we
hope is a simple introduction to a complex field, seem to make the manual
worth publishing.

Chance apparently is ubiquitous to all universes this side of heaven.
As a result, the manual should be useful to others than undergraduate
chemistry majors.

A certain indebtedness to those from whom I may appear to have
plagiarized is hereby admitted. But why publish something if you don’t
want it used?

I appreciate, also, the typing of Mrs. Judy Baker, Mrs. Karen Barbee,
and Mrs. Kay Pool. And I thank Mr. Joseph Hartswicke for being my
computer consultant.

Hubert L. Youmans
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CHAPTER 1

Introduction

Purpose

To introduce small-sample statistics as a useful tool for systema-
tizing experimental design and interpretation, to suggest this
manual as a practical introduction to statistics in chemistry, and
to present a selected bibliography of applied statistics for further
study.

Statistics is a field of specialization, in a manner similar to analytical
chemistry. Statistics is an area of specialization in mathematics; analytical
chemistry is a specialized area of chemistry. As analytical chemistry has
many sub-areas useful under different circumstances, so has statistics.
The methods of this manual make up part of what is called small-sample
statistics.

Small-sample statistics resulted from the efforts of R. A. Fisher and
others to systematize experimental design and interpretation. It is the
application of statistical methods to the small samples of data usually
obtainable by experimentation. This manual consists of some simple
methods of general applicability to chemistry. They should serve as a
basis for much experimentation and as background for learning more
specialized or complex procedures.

The following books have been used extensively in writing this manual:

Langley, R., Practical Statistics Simply Explained, Revised Edition,
1971, Dover Publications, Inc., New York.

Fisher, R. A., Statistical Methods for Research Workers, 13th Edition,
1963, Oliver and Boyd, Ltd., Edinburgh.

1



2 Statistics for Chemistry

Fisher, R. A., The Design of Experiments, 8th Edition, 1966, Hafner
Publishing Company, New York.

Wortham, A. W. and T. E. Smith, Practical Statistics in Experimental
Design, 1959, Dallas Publishing House, Dallas.

Snedecor, G. W. and W. G. Cochran, Statistical Methods, 6th
Edition, 1967, The Iowa State University Press, Ames, Iowa.
Davies, O. L., editor, The Design and Analysis of Industrial Experi-
ments, 2nd edition, 1967, Hafner Publishing Company, New

York.

Appropriate journal articles will be cited throughout the text.

An attempt is made not to limit the statistical methods to specific
chemical problems. Types of uses, along with specific examples, are sug-
gested; some of these are used to illustrate the methods. Calculation tables
are included to aid the novice.

Each statistical treatment is presented as a single experiment. Judicious
choice of experimental conditions, however, permits several treatments of
the same set of data.

The manual makes no attempt to cover statistical theory. Several
monographs are available to the interested student. The emphasis here is
on application. Only that theory necessary for understanding the purpose
and execution of the experiments is included.

The relation of statistics to chemistry is similar to the relation of analyti-
cal chemistry to other areas of science. A biologist may fruitfully use
analytical methods without an understanding of them comparable to an
analytical chemist’s. There is no shame in using a cookbook, if it is
intelligently done. One may be a competent technician in many fields
where time and inclination preclude thorough theoretical knowledge.

But a chemist should learn enough statistics to solve his simpler statisti-
cal problems. For some problems, he will have to consult with a statisti-
cian. He then should know enough statistics to criticize and control the
solution to these problems. Otherwise, he may end up with a beautiful
statistical study that does not solve his chemical problem—for his statis-
tician probably won’t know much chemistry.



CHAPTER 2

Small-Sample
Statistics in Chemistry

Purpose

To give an overview of the role of statistics in chemistry. Some
ideas, purposes, and methods of small-sample statistics are
briefly discussed. Statistical designs have as their basis attempts to
characterize systems from relatively small numbers of measure-
ments on the systems. Such incomplete data collections do not
permit infallible conclusions, but statistics makes possible experi-
mental design and interpretation improvements that include
estimates of error in system characterizations.

Small-sample statistics is a mathematical tool that may be used to
describe a large set of data from a small sample of that data. The complete
set of data, called a population, may or may not be known. It may be
physically impossible to obtain all the data or the population may simply
be too large to conveniently measure. Some of the data may not actually
exist; these may be hypothetical or potential.

Statistics has many uses. In analytical chemistry, sampling and analytical
errors are efficiently studied by statistical methods. Analytical methods
may be compared. The effects of the variables in a chemical process
may be evaluated. Optimum operating conditions for a process can be
determined.

Experimental statistics is used to test a scientific hypothesis. Most
statistical tests are based on the so-called null hypothesis. That is, the
hypothesis is used to determine if a difference exists among the things
tested. The hypothesis in some way states that no difference or a known
difference exists among the things tested.

3
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A null hypothesis can be disproved, but not proved, with a small number
of data. For instance, we may hypothesize that two analytical procedures
give statistically equivalent results. Statistical treatment of the results will
then permit us to determine with a certain probability if this is a false
statement. If we fail to disprove the null hypothesis, we must accept it as
true. If our test disproves the null hypothesis, we must accept the alternate
hypothesis that the procedures do not give statistically equivalent results.

Statistics cannot say absolutely that a difference exists among things
tested. What it can do is estimate the probability that a difference exists.
The probability of a given measurement is the number of data of that size
divided by the total number of data in the population. Percent probability
is this number multiplied by 100. If the population is continuous, the
probability must be given for the difference between two measurements,
rather than for a single measurement. This is because the probability of an
event in a continuous distribution is zero.

If in 100 reference samples 18 contained 3.829 molybdenum, the
probability that a randomly selected sample from this finite population of
samples would contain 3.8297 Mo is 18 <+ 100 or 0.18.

The number of measurements in a continuous distribution is represented
by the area under the distribution curve. A point on this curve has height
but not width, so there can be only zero area beneath it. Then the proba-
bility of the point is zero divided by the area beneath the curve. This gives
zero for the probability of the point. But there is area beneath the part of
a curve connecting two points, hence the distance between the two points
has a probability greater than zero.

The statistics that we shall use is based on a normal or Gaussian curve,
which is continuous. Thus a range of values around some average is
obtained for a statistic.

In estimating a population parameter or statistic, such as the arithmetic
mean, we shall obtain a range of values with some measure that the range
contains the absolutely correct value. An analysis may give some such
result as 12.55 3= 0.05 % with a 959 probability. This may not sound like
a satisfactory state of affairs, but it’s a more accurate and truthful evalua-
tion than we could get from just a single number, such as the midpoint of
the range.

Statistics increases the efficiency of evaluating data. It will help us
extract the maximum amount of information from our experiments. It
also will help reduce the amount of experimentation. This involves
experimental design.

¥ Data collected without design are much more difficult to treat statisti-
cally than are data gathered with a design amenable to statistical evalua-
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tion. Yet the paramount purpose of our experimenting is chemical and
must not be sacrificed for statistics. We should use statistics only as it
serves our reasons for experimenting. Our best experimental designs,
however, will harmonize the requirements of chemistry and statistics.

When one sets out to gather data from experiments, he always plans to
arrange the results in some manner. This is required for presentation and
assimilation. If the collecting and arranging has been haphazard in the
least, statistics can usually provide designs that produce an equal amount
of information for less effort. Statistical designs will also frequently
produce information not readily obtained otherwise. But statistics cannot
create information; it can only extract that inherent in the data.

Wisely used statistics forces improvements in experimentation. To choose
an experimental design, one must consider what he is seeking and how
best to arrive at it. This necessity of carefully identifying the problem is
frequently avoided, if at all possible. Problems are often created or
changed to use and justify poorly conceived research. This is the backward
approach. Statistics helps us to force identification of problems before
experimentation takes place.

A good experimental design yields the desired information with a mini-
mum of experimental effort. A good design should correctly formulate the
questions to be answered by experimenting. It should take into account
the accuracy required and the experimental difficulties that may be en-
countered. The kind, number, spacing and interrelations of the various
observations should be correctly chosen.

Another advantage of using statistical designs is that all possible
sources and magnitudes of errors must be considered. Decisions must be
made about how errors are to be treated or their effects nullified. Statistics
requires a careful consideration of the number of measurements to be
made and the magnitude of the variables, such as sample size.

Because experimental results are often interpreted by statistical tests of
significance, Jevels of significance must be chosen. They must always be
chosen before the data are collected, in order to avoid bias. For instance,
if we compare two analytical methods, we may wish to make the level
“significant.” We therefore determine from probability tables the value
of some statistic, such as Student’s ¢, that has a probability 0.05 of being
exceeded if all results by the two methods belong to the same population.
We do this before experimenting. If the tabular statistic is subsequently
exceeded in the experiments, our null hypothesis of equivalency is said to
be disproved. The difference between the two methods is “significant.”
The “highly significant” level has a probability 0.01 of being exceeded.

In the above test, we assume that if the calculated statistic exceeds the
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tabular value, it does not belong on the same Gaussian curve as the
tabulated statistic, even though 597 or 19 of the values on the reference
curve exceed the tabular value.

There is obviously a chance that the assumption is not justified. We thus
could make a wrong decision about the methods, based on statistics. But
the probability is not 0.05 or 0.01. It is usually considerably less, but
generally is unknown. The 0.05 and 0.01 simply represent probabilities
that certain numbers will be exceeded in a single population.

There are two ways of making wrong decisions. Two pieces of data may
belong to the same population but be outside the chosen limits of a
probability level. They would be incorrectly said to belong to different
populations. Or two pieces of data may fall within the chosen limits, but
belong to different populations. They would be incorrectly said to belong
to the same population.

The best defenses against such errors are large samples and thorough
randomization of data. One should also remember that statistics implies
there is something tentative about every accepted hypothesis. This should
be the first axiom of the experimentalist.

The statistical methods of this manual are useful in disciplines other than
chemistry. The methods for comparing measurements of things don’t
necessarily change with the nature of the things measured. There are
relations in nature.



CHAPTER 3

Significant Figures
and Rules
for Their Use

Purpose

To differentiate between accuracy and precision and to give rules
for using numbers so that properly warranted accuracy or preci-
sion will be implied by measured data.

Measured numbers are approximate numbers. Weighings, volumetric
measurements and the like always have error associated with them.
Significant figures are used to indicate the accuracy of measured numbers.

Accuracy tells how correctly a measurement was made. Precision shows
the repeatability of a measurement. Frequently, accuracy is unknown or at
best poorly estimated. In such cases, significant figures may only reflect
precision. This may be unavoidable. Sometimes it is desirable. One should
never, however, equate precision with accuracy. This section is largely
concerned with expressing accuracy. The rules are equally applicable,
though, to calculations with numbers of unknown accuracy but known
precision.

Numbers may be classified as exact or measured. An exact number has
no error in it. Exact numbers are either theoretical or counted numbers.
If we wish to convert a decimal fraction to percent, we multiply by 100,
a theoretical number. There is no error in the 100. It is by definition exactly
100. Other examples of theoretical numbers are:

1000, to convert grams to milligrams;
2, to double a sample size;
60, to convert minutes to seconds.

An example of a counted number would be the number of replicates of
an analysis. This is usually so small as to preclude error.

7
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Fractions may be exact or measured quantities. To differentiate between
the two, express exact fractions as common fractions and measured
fractions as decimals. Examples are:

Z of a counted dozen samples,
0.100 of a measured volume.

Counted numbers are exact because of their size and nature. A student
can count the number of flasks in his laboratory desk. A chemist can count
the new compounds that he has made.

Counted numbers shade over into measured numbers. For instance, a
chemistry professor can count the number of students in class on a given
day. Frequently, however, the registrar can’t give the number of students
enrolled in all chemistry courses. Students may have withdrawn recently
from courses, the computer section may be behind in its work—many
factors may force the registrar into giving an approximate number.

We normally think of the United States census as a count of this
country’s people. Yet Avogadro’s number is more accurately known than
is the population of New York City. Both are measured numbers because
of inaccuracies of counting,

A measured number has /imited accuracy because of the limitations in
measurement technique and instruments. On a triple beam balance we
may weigh a sample to the nearest 0.1 g. The same sample can be weighed
on an analytical balance to 0.0001 g.

A measured number should indicate the accuracy of the measurement.
If we report a sample weight as 1.8264 g., the actual weight should be
between 1.82635 and 1.82645 g. In other words, the inaccuracy of the
number should be in the last digit to the right. A measured number thus
implies an error of up to =% of 1 in the last digit to the right; 1.8264 g.
implies that the true value is in the range 1.8264 + 0.00005 g. No proba-
bility of accuracy is associated with this.

Accuracy is frequently confused with precision. Although good precision
is desirable, it can falsely suggest good accuracy. A constant error causes
poor accuracy; it affects precision not at all.

The accuracy of measured numbers is indicated by significant figures.
The term “significant” as related to a number is generally used to indicate
a confidence level, discussed later. One normally speaks of significant
figures, that is, digits within a number. In a number where the error in the
number is in the right-hand digit:

all non-zero digits are significant,

zeros between other digits are significant,

terminal zeros are significant,

zeros preceding the first non-zero digit are not significant.



