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PREFACE

This book contains the proceedings of a conference
"Mathematical Methods in Computer Graphics and Design",
organized by the Institute of Mathematics and its Applications
and held at the University of Leicester on 28th September, 1978.

The idea for the conference came from the IMA Numerical
Analysis group, who felt there was a need to bring together
those developing graphical algorithms and those likely to use
them. The size and range of the audience confirmed the wide
interest in computer graphics - over 200 people attended, with
a good balance between representatives from universities,
government research establishments and private industry.

The speakers, too, represented a wide range of interests
and included specialists in numerical analysis, computer
graphics and computer-aided design. The order of the papers
in this volume reflects the order in which the talks were
presented.

The first paper, by myself, gives a review of methods
for curve and function drawing. Two papers on contouring
follow, one by Dale Sutcliffe (Rutherford Laboratory) describing
the regular grid case and the other by Malcolm Sabin (CAD
Centre) reviewing methods for scattered data. Audience
reaction at the conference showed that many people from diffe-
rent backgrounds are interested in contouring, and that con-
tinuing efforts to develop good contouring algorithms are
certainly justified. The fourth paper is by Dermot McIain
(University of Sheffield), who discusses the problems of curve
and surface drawing when the data are subject to errors, and
points out the need to embed computer graphics techniques in
more complex systems where information from databases is used
to supplement the data supplied by the user. The final two
papers by Robin Forrest (University of East Anglia) and Ian
Braid (University of Cambridge) turn the spotlight on computer-
aided design. Forrest describes recent progress in geometric
algorithms, while Braid discusses some of the problems in
volume modelling.
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viii PREFACE

There was a good deal of interesting discussion after
each talk. Although it proved impractical to record the dis-
cussions, the audience were asked to send in their questions
and comments in writing after the conference. There was a
good response to this request. For example, I received several
interesting questions on my talk and indeed one written comment
brought to light a curve drawing method which performs better
than any I talked about at the conference! In most cases,
the guestions and comments (with replies from the speakers)
have been included at the end of each paper, although in some
cases the authors have incorporated the comments directly into
their text.

I hope the book will be of interest to those developing
computer graphics algorithms, and more importantly, to those
who need to apply these algorithms in practical situations.
The conference was held at a time when NAG are planning the
development of a chapter of graphical routines to add to their
main numerical library. It is likely that early contributions
to the chapter will be in the areas of curve and function drawir
and contouring. The interest shown by the audience in these
two areas confirmed the need for this new NAG development,
and gave those planning the graphics chapter some indication
of particular user requirements.

There are many people to thank for their help in the
organisation of the conference. 1In particular it is a pleasure
to give special thanks to three people: Catherine Richards
of the IMA, for her overall help, Cacs Hinds of the IMA, for
her hard work "behind-the-scenes" in organizing the conference
and Geoff Hayes for acting as Chairman and making sure the
brogram ran smoothly.

Finally I wish to thank all those who have helped in the
preparation of these proceedings. Particular thanks are due
to my colleague Andrew Nash for his help with artwork, and
to my wife, Trish, for her editorial assistance. Finally I
would like to thank Miss J. Fulkes and Mrs. S. Hockett of
the IMA for their accurate typing of the final manuscript.

November 1979 Kenneth W. Brodlie
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1. A REVIEW OF METHOPS FOR GURVE, AND. FUNCTION DRAWING

.ngBrodlié
(Univerditylof ;Leicester)

1. INTRODUCTION

This paper reviews methods for curve and function
drawing in computer graphics. The approach taken is influenced
by the author's own particular experience which lies in a
general university computing service environment rather than
in a specialist computer-aided design department. Thus the
paper concentrates on methods for drawing a smooth curve
through a number of data points - these data points typically
being the result of some scientific experiment. Only a brief
introduction is given to the interactive design of curves,
and interested readers are directed towards the CAD literature.

The major part of the paper, then, considers the
construction of a smooth curve through a number of data points
(%4,vi), 1 = 1,2,..n. Two quite distinct cases are identified.
First when it is known that there is some function underlying
the data which is single-valued - for example, when the data
represents measurements of temperature at regular time
intervals. It is obviously essential that the drawn curve
should also be single-valued. The usual approach is to
construct some function y = f(x) which interpolates the data
- generally a piecewise cubic polynomial - and then plot the
function f(x).

There are cases of course when single-valued curves are
too restrictive. Certainly when one is concerned with drawing
shapes rather than plotting graphs, the possibility of a curve
being multi-valued is essential. Here a different approach
is needed, one in which x and y are considered separately as
functions of a parameter t. The data points (xi,yi) are
assigned parameter values tj according to some scheme, and
interpolants x(t),y(t) are constructed such that x(ty) = x4,
y(ti) = yj, i = 1,2,..n. The resulting curve (x(t),y(t)) is
known as a parametric curve, and can be multi-valued, even
closed. When drawing shapes, it is essential that the curves
should be independent of the particular axis system used to
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2 BRODLIE

define the data points. Thus x(t),y(t) must be defined in a
suitable symmetric manner to ensure that the drawn curve is
independent of an axis rotation.

Both types of curve drawing are needed. Single-valued
curves cannot offer the flexibility required in some
Situations, but equally, parametric curves which are invariant
under rotation cannot guarantee to produce a single-valued
curve from "single-valued data", i.e. data with x-values
satisfying x7 < xp < .. < Xp. It is surprising that GHOST
(GHOST User Manual, 1978) and GINO-F (GINO-F User Manual,
1975) , probably the two most widely used graphics packages
in the UK, only offer one type of method - in each case a
rotation-invariant parametric curve drawing routine. Of
course this is disastrous for users who wish to ensure that
a curve is single-valued. Figs. 1 and 2 show the curves
drawn by the two packages through a set of data points,
representing measurements of the speed of a particle at
regular time intervals. No further comment is really needed
- the resulting curves simply do not make sense.

Various aspects of single-valued curve drawing are
described in sections 2 - 4 of this paper, and parametric
curves are discussed in section 5.

Throughout this paper it is assumed that the curve is
to be drawn through the data points. Often, however, the
data points are recognised to be subject to error, and the
user simply wishes the curve to approximate the data, say in
a least-squares sense. This case is not discussed in this
paper, since it is dealt with in McLain's paper, Chapter 4 of
this book.

Two other topics, however, are discussed. Section 6
gives a brief introduction to the interactive design of curves,
and relates the methods used by designers to create curves of
a desired shape, to the methods for drawing curves through
data points described in the earlier sections of the paper.
Finally, in section 7, the problem of plotting a user-supplied
function of one variable is discussed.

2. SINGLE-VALUED CURVES - CUBIC SPLINES

Probably the best known technique for constructing a
single-valued curve y = f(x) through the data points (%5 ,v1),
i=1,2,..n, is that of spline interpolation. A spline is
simply a piecewise polynomial of degree m with its first (m- 1)
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4 BRODLIE

derivatives continuous at the joins. More precisely, a
spline function s(x) of degree m with knots A1sAs -k
(A1 < Ag.. < Xx) is a function with the following properties:

(i) 1in each interval
X\<>‘li>\i\<X~<>\i+1 i=l,..k—l;x>>\k

s(x) is a polynomial of degree m at most;

(ii) s(x) and its first (m - 1) derivatives are
continuous.
In practice, cubic splines (m = 3) are most common ly

used, the second derivative continuity they provide being
adequate for most situations.

For computational purposes, a cubic spline is best
represented as a linear combination of B - splines, sometimes
called fundamental splines. A cubic B — spline is itself a
cubic spline, with the same set of knots as the original
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spline, but with the special characteristic that it is zero
everywhere except over four adjacent knot intervals. Thus the
cubic B - spline Ni(x) is defined as a cubic spline which is

non-zero over the interval Ai < x < Ai, and zero elsewhere

4
(see Fig. 3). In fact this is sufficient to define Ni(x)

uniquely, apart from an arbitrary scale factor which can be
chosen so that:

ZNi(x) =1

i

at all points x in the interval {a,b} over which the spline
is defined. The functions Nj (x) are often called normalized
B - splines.

A cubic spline with k knots can be expressed as a linear
combination of (k+4) cubic B-splines:

k+4
s(x) = a, N,(x)
; ii
i=1
To complete the definitions of the B-splines, four additional
knots are added at each end of the spline - A—B' A—2’ A_l, AO
at the left-hand end and X A A A at the right-

k+1, "k+2, "k+3, "k+4
hand end.

The particular problem of cubic spline interpolation is
to find s(x) such that:

S(Xj) = yj, j=1,2,..n

k+4
1.0, iil aiNi(xj) yj, j=1,2,..n (2.1)
where s(x) has knots Aj,Ap,..Ax. Notice that the system
(2.1) has n equations in (k + 4) unknowns a;. An obvious
strategy is to select the central (n - 4) interior data
points as the knots of the spline, giving a fully determined
system of n equations in n unknowns.

An alternative is to choose all the (n - 2) interior
data points as knots, and this gives the freedom to specify
two conditions in addition to the n interpolatory conditions
(2.1). In particular, it allows the slopes of the spline
at the end-points x1 and x; to be specified, should these
happen to be known - this gives what is termed a clamped
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spline. Alternatively, the end-conditions

dzs

— =0, x = X7 and X = X
ax2 ' 1

Tl

can be specified; this leads to the so-called natural spline
which has the smoothness property that among all functions
f(x) which have continuous second derivatives and pass
through the data points, it minimizes

Xn 5
(212 ax
X, dx

The particular spline chosen will depend on the
application, but in the absence of any special circumstances,
the simple strategy of selecting the central (n - 4) data
points as knots usually works well. The advantage of the
B - spline representation is evident in the solution of the
equations (2.1): since each B - spline function N; (x) is zero
nearly everywhere, the equations have a convenient banded
structure. It is important from a numerical standpoint
that the B - splines are evaluated accurately and efficiently
- see Cox [ 1972} .

It has only been possible here to give a brief outline
of spline interpolation. Good references on cubic spline
interpolation in the numerical analysis literature are the
papers by Cox [ 1975, 1977]; a good reference describing
the various end-conditions for cubic splines in CAD is the
paper by Adams [ 1974].

Two main objections have been levelled at cubic splines
in the curve drawing context. The first is their tendency to
produce unwanted points of inflection in the curve. Fig. 4
shows the cubic spline interpolant for a set of cost-
effectiveness data. For theoretical reasons, the curve is
known to be everywhere concave and free from inflection
points - so the spurious inflection point introduced by the
spline interpolant is misleading. Fig. 5 shows another
example of the rather 'loose' type of curve generated by
cubic splines - notice the 'overshoots' at either side of the
main peak.

It is helpful at this stage to think of the spline as
a thin strip of wood or plastic constrained to pass through
the data points. The unwanted inflection points can be
removed by pulling on the ends of the strip. If sufficient
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CURVE AND FUNCTION DRAWING 9

tension is applied, the data points will simply be connected
by straight line pieces. This notion has been translated into
mathematical terms in the form of a spline under tension,
suggested originally by Schweikert [ 1966] and developed later
by Cline [ 1974] and Pilcher [ 1974].

Cline's presentation is followed here. He seeks a func-
tion f(x) such that:

f(xl) = ylr i= 1,2,..1'1

and 5
(2) da’f
(x) = —"59

dx

f(2)(x) - c2f(x) (where £

is continuous in {xl,xn} and linear on each subinterval

{xi, Xi+l}’ i=1,2,..n -1. The factor ¢ is known as the
tension factor: if o = O, the function f is simply a cubic
spline, while as 0 - «, the function f tends to a piecewise
linear function connecting the data points. The intention is
that as o increases from zero, so the curve defined by £
should appear to give a 'tighter' fit to the data.
- (2) 2 .

The condition that (£ (x) - 0"f(x)) be linear on each
subinterval leads to a set of ordinary differential equations.
These are easily solved (see Cline's paper for details),

giving the spline under tension as:

. ~ f(2)(xi) Sinh(O(xi+l—x))
x) = 2 sinh(oh,)
(2) * (2) .
£ (x,) (x.+l-X) £ (x, l) sinh (o (x-x,))
+ (y 1. ) 1 + i+ . .
2 h. 2 sinh (ch,)
o7 2 i o i
£ (x +l) (x—xi)
+ (yi+l - 5 ) T (2.2)
o i

for x in the interval {xi, x

(

2
second derivatives f )(xi) are found by differentiating (2.2)

(1)

}. Here h,=x, .-x.. The unknown
i Ti i

i+l +1

and matching £ (x) at the end-points of intervals - a tri-

diagonal system of equations has to be solved.

The curves produced by splines under tension for the



