Wolfgang Emmerich
Alexander L. Wolf (Eds.)

Component
Deployment

| I Second International Working Conference, CD 2004
Edinburgh, UK, May 2004
Proceedings

LNCS 3083

53 € Springer

TP3NS8-55
137 Wolfgang Emmerich Alexander L. Wolf (Eds.)
L 121

Component
Deployment

Second International Working Conference, CD 2004
Edinburgh, UK, May 20-21, 2004
Proceedings

P -
& < F
§ 3

g

e

W\I\il')llillllll))\\I\llllll

E200404034

Springer

Volume Editors

Wolfgang Emmerich

University College London

Dept. of Computer Science

Gower Street, London WCI1E 6BT, UK
E-mail: w.emmerich@cs.ucl.ac.uk

Alexander L. Wolf

University of Colorado

Department of Computer Science
Boulder, Colorado, 80309-430 USA
E-mail: alw@cs.colorado.edu

Library of Congress Control Number: 2004105536

CR Subject Classification (1998): D.2, E3, D.1, D.3,D.4

ISSN 0302-9743
ISBN 3-540-22059-3 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

(© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11009528 06/3142 543210

Preface

This volume of the Lecture Notes in Computer Science series contains the pro-
ceedings of the second Working Conference on Component Deployment, which
took place May 20-21, 2004, at the e-Science Institute in Edinburgh, Scotland,
as a collocated event of the International Conference on Software Engineering.

Component deployment addresses what needs to be done after a component
has been developed. Component deployment includes activities such as compo-
nent customization, configuration, integration, activation, de-activation and de-
commissioning. The emerging research community that investigates component
deployment concerns itself with the principles, methods and tools for deployment
activities. The community held its first working conference in Berlin, Germany,
in June 2002. The proceedings were published by Springer-Verlag as volume 2370
of the Lecture Notes in Computer Science series.

The program of this year’s conference consisted of an invited talk and 16
technical paper presentations. The invited talk was given by Patrick Goldsack
of Hewlett Packard Research Laboratories Bristol, UK. He presented the Smart-
Frog component deployment framework that HP released as Open Source. The
technical papers were carefully selected from a total of 34 submitted papers. Each
paper was thoroughly peer reviewed by at least three members of the program
committee and consensus on acceptance was achieved by means of an electronic
PC meeting.

The conference and these proceedings would not have been possible with-
out the help of a large number of people. Anthony Finkelstein, in his role as
General Chair of ICSE, simplified our task considerably by arranging our use
of the CyberChair electronic submission and reviewing service, as well as han-
dling publicity and registration. We are indebted to ACM SIGSOFT and the
UK e-Science Programme for generously providing support for the conference,
and to Malcolm Atkinson and Dave Berry at the e-Science Institute for hosting
CD 2004. Particular thanks go to Gill Mandy for handling the local arrange-
ments. Richard van der Stadt of Borbala was always available and responded
incredibly quickly whenever we needed him and, as a result, he eased the paper
submission and review process considerably. Finally, we thank the members of
the program committee for their hard work and careful reviews.

March 2004 Wolfgang Emmerich and Alexander L. Wolf

Program Committee

Uwe Assmann, Linkoeping University, Sweden

Judy Bishop, University of Pretoria, South Africa

Wolfgang Emmerich (Co-chair), University College London, UK
Volker Gruhn, University of Leipzig, Germany

Richard Hall, IMAG LSR, Grenoble, France

Stephan Herrmann, TU Berlin, Germany

Alan Kaplan, Panasonic Research, USA

Jeff Magee, Imperial College London, UK

Neno Medvidovic, University of Southern California, USA

Rick Schlichting, ATT Research, USA

Santosh Shrivastava, Newcastle University, UK

Clemens Szyperski, Microsoft Research, USA

Jan Vitek, Purdue University, USA

Kurt Wallnau, SEI, Carnegie Mellon University, USA
Alexander Wolf (Co-chair), University of Colorado, Boulder, USA

Sponsoring Institutions

ACM Special Interest Group on Software Engineering (SIGSOFT)
UK e-Science Programme

Lecture Notes in Computer Science 3083

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbrueckgn, Germany

"3

Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan

Paris

Tokyo

Vol. 3004: J. Gottlieb, G.R. Raidl (Eds.), Evolution-
ary Computation in Combinatorial Optimization. X, 241
pages. 2004.

Vol. 3003: M. Keijzer, U.-M. O’Reilly, S.M. Lucas, E.
Costa, T. Soule (Eds.), Genetic Programming. XI, 410

, bages. 2004.

Vol. 3002: D.L. Hicks (Ed,), Metainformatics. X, 213
pages. 2004.

Vol. 3001: A. Ferscha, F. Mattern (Eds.), Pervasive Com-
puting. XVII, 358 pages. 2004.

Vol. 2999: E.A. Boiten, J. Derrick, G. Smith (Eds.), Inte-
grated Formal Methods. XI, 541 pages. 2004.

Vol. 2998: Y. Kameyama, P.J. Stuckey (Eds.), Functional
and Logic Programming. X, 307 pages. 2004.

Vol. 2997: S. McDonald, J. Tait (Eds.), Advances in Infor-
mation Retrieval. XIII, 427 pages. 2004.

Vol. 2996: V. Diekert, M. Habib (Eds.), STACS 2004. XVI,
658 pages. 2004.

Vol.2995: C. Jensen, S. Poslad, T. Dimitrakos (Eds.), Trust
Management. XIII, 377 pages. 2004.

Vol. 2994: E. Rahm (Ed.), Data Integration in the Life
Sciences. X, 221 pages. 2004. (Subseries LNBI).

Vol. 2993: R. Alur, G.J. Pappas (Eds.), Hybrid Systems:
Computation and Control. XII, 674 pages. 2004.

Vol. 2992: E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Béhm, E. Ferrari
(Eds.), Advances in Database Technology - EDBT 2004.
X V111, 877 pages. 2004.

' Vol. 2991: R. Alt, A. Frommer, R.B. Kearfott, W. Luther

(Eds.), Numerical Software with Result Verification. X,
315 pages. 2004.

Vol. 2989: S. Graf, L. Mounier (Eds.), Model Checking
Software. X, 309 pages. 2004.

Vol. 2988: K. Jensen, A. Podelski (Eds.), Tools and Algo-
rithms for the Construction and Analysis of Systems. XIV,
608 pages. 2004.

Vol. 2987: 1. Walukiewicz (Ed.), Foundations of Software
Science and Computation Structures. XIII, 529 pages.
2004.

Vol. 2986: D. Schmidt (Ed.), Programming Languages and

< Systems. XII, 417 pages. 2004.

Vol. 2985: E. Duesterwald (Ed.), Compiler Construction.
X, 313 pages. 2004.

Vol. 2984: M. Wermelinger, T. Margaria-Steffen (Eds.),
Fundamental Approaches to Software Engineering. XII,
389 pages. 2004.

Vol. 2983: S. Istrail, M.S. Waterman, A. Clark (Eds.),
Computational Methods for SNPs and Haplotype Infer-
ence. IX, 153 pages. 2004. (Subseries LNBI).

Vol. 2982: N. Wakamiya, M. Solarski, J. Sterbenz (Eds.),
Active Networks. XI, 308 pages. 2004.

Vol. 2981: C. Miiller-Schloer, T. Ungerer, B. Bauer (Eds.),
Organic and Pervasive Computing ~ ARCS 2004. XI, 339
pages. 2004.

Vol. 2980: A. Blackwell, K. Marriott, A. Shimojima (Eds.),
Diagrammatic Representation and Inference. XV, 448
pages. 2004. (Subseries LNAI).

Vol. 2979: I. Stoica, Stateless Core: A Scalable Approach
for Quality of Service in the Internet. XVI, 219 pages.
2004. .

Vol. 2978: R. Groz, R.M. Hierons (Eds.), Testing of Com-
municating Systems. XII, 225 pages. 2004.

Vol. 2977: G. Di Marzo Serugendo,A. Karageorgos, O.F.
Rana, F. Zambonelli (Eds.), Engineering Self-Organising
Systems. X, 299 pages. 2004. (Subseries LNAI).

Vol. 2976: M. Farach-Colton (Ed.), LATIN 2004: Theo-
retical Informatics. XV, 626 pages. 2004.

Vol. 2973: Y. Lee, J. Li, K.-Y. Whang, D. Lee (Eds.),
Database Systems for Advanced Applications. XX1V, 925
pages. 2004.

Vol. 2972: R. Monroy, G. Arroyo-Figueroa, L.E. Sucar, H.
Sossa (Eds.), MICAI 2004: Advances in Artificial Intelli-
gence. XVII, 923 pages. 2004. (Subseries LNAI).

Vol. 2971: J.I. Lim, D.H. Lee (Eds.), Information Security
and Cryptology -ICISC 2003. XI, 458 pages. 2004.

Vol. 2970: E. Fernandez Rivera, M. Bubak, A. G6mez Tato,
R. Doallo (Eds.), Grid Computing. XI, 328 pages. 2004.

Vol. 2968: J. Chen, S. Hong (Eds.), Real-Time and Em-
bedded Computing Systems and Applications. XIV, 620
pages. 2004.

Vol. 2967: S. Melnik, Generic Model Management. XX,
238 pages. 2004.

Vol. 2966: E.B. Sachse, Computational Cardiology. X VIII,
322 pages. 2004.

Vol. 2965: M.C. Calzarossa, E. Gelenbe, Performance
Tools and Applications to Networked Systems. VIII, 385
pages. 2004.

Vol. 2964: T. Okamoto (Ed.), Topics in Cryptology — CT-
RSA 2004. XI, 387 pages. 2004.

Vol. 2963: R. Sharp, Higher Level Hardware Synthesis.
XVI, 195 pages. 2004.

Vol. 2962: S. Bistarelli, Semirings for Soft Constraint
Solving and Programming. XII, 279 pages. 2004.

Vol. 2961: P. Eklund (Ed.), Concept Lattices. IX, 411
pages. 2004. (Subseries LNAI).

Vol. 2960: P.D. Mosses (Ed.), CASL Reference Manual.
XVII, 528 pages. 2004.

Vol. 2959: R. Kazman, D. Port (Eds.), COTS-Based Soft-
ware Systems. X1V, 219 pages. 2004.

Vol. 2958: L. Rauchwerger (Ed.), Languages and Compil-
ers for Parallel Computing. XI, 556 pages. 2004.

Vol. 2957: P. Langendoerfer, M. Liu, I. Matta, V. Tsaous-
sidis (Eds.), Wired/Wireless Internet Communications.
X1, 307 pages. 2004.

Vol. 2956: A. Dengel, M. Junker, A. Weisbecker (Eds.),
Reading and Learning. XII, 355 pages. 2004.

Vol. 2954: F. Crestani, M. Dunlop, S. Mizzaro (Eds.), Mo-

bile and Ubiquitous Information Access. X, 299 pages.
2004.

Vol. 2953: K. Konrad, Model Generation for Natural Lan-
guage Interpretation and Analysis. XIII, 166 pages. 2004.
(Subseries LNAI).

Vol. 2952: N. Guelfi, E. Astesiano, G. Reggio (Eds.), Sci-

entific Engineering of Distributed Java Applications. X,
157 pages. 2004.

Table of Contents

A Tailorable Environment for Assessing the Quality of Deployment
Architectures in Highly Distributed Settings..........................
Marija Mikic-Rakic, Sam Malek, Nels Beckman, and Nenad Medvidovic
(University of Southern California, USA)

Customizing Component-Based Architectures by Contract
Orlando Loques (Universidade Federal Fluminese, Brazil) and
Alerandre Sztajnberg (Universidade do Estado do Rio de Janeiro,
Brazil)

Deploying CORBA Components on a Computational Grid: General
Principles and Early Experiments Using the Globus Toolkit
Sébastien Lacour, Christian Pérez, and Thierry Priol (IRISA/INRIA,
France) .

Asynchronous, Hierarchical, and Scalable Deployment of
Component-Based Applicationsc.oouuurononeon ..
Vivien Quéma (INRIA Rhéne-Alpes, France), Roland Balter,

Luc Bellissard, David Féliot, André Freyssinet, and Serge Lacourte
(ScalAgent Distributed Technologies, France)

Dynamic Deployment of IIOP-Enabled Components in the JBoss Server .
Francisco Reverbel (University of Sio Paulo, Brazil), Bill Burke, and
Marc Fleury (JBoss Inc, USA)

A Policy-Driven Class Loader to Support Deployment in Extensible
Frameworks
Richard S. Hall (Laboratoire LSR-IMAG Grenoble, France)

MagicBeans: a Platform for Deploying Plugin Components
Robert Chatley, Susan Eisenbach, and Jeff Magee (Imperial College
London, UK)

Dynamic Deployment of Executing and Simulating Software
Components.
Alezander Egyed (Teknowledge Corp., USA)

Towards a Dynamic Resource Contractualisation for Software
Components.

Nicolas Le Sommer (University of South Brittany, France)

Keeping Control of Reusable Components
Susan Eisenbach, Dilek Kayhan (Imperial College London, UK), and
Chris Sadler (Middlesex University, UK)

65

X Table of Contents

Eureka — A Resource Discovery Service for Component Deployment 159
Karl Pauls (FU Berlin, Germany) and Richard S. Hall (Laboratoire
LSR-IMAG Grenoble, France)

Secure Deployment of Componentsc.coooioo.... 175
Mark Grechanik and Dewayne E. Perry (University of Texas at Austin,
USA)

JPloy: User-Centric Deployment Support in a Component Platform 190
Chris Liier and André van der Hoek (University of California, Irvine,
USA)

On the Performance of SOAP in a Non-trivial Peer-to-Peer Experiment .. 205
Tom Van Cutsem, Stijn Mostinckz, Wolfgang De Meuter,

Jessie Dedecker, and Theo D’Hondt (Vrije Universiteit Brussels,

Belgium)

A Flexible and Secure Deployment Framework for Distributed

V24001 1 Tor: 10T 1 R PP 219
Alan Dearle, Graham Kirby, Andrew McCarthy, and

Juan Carlos Diaz y Carballo (University of St Andrews, UK)

Deploying Agents with the CORBA Component Model 234
Fabio Melo, Ricardo Choren, Renato Cerqueira, Carlos Lucena (PUC

Rio de Janeiro, Brazil), and Marcelo Blois (PUC Rio Grade do Sul,

Brazil)

Author Index 249

A Tailorable Environment for Assessing the Quality of
Deployment Architectures in Highly Distributed Settings

Marija Mikic-Rakic, Sam Malek, Nels Beckman, and Nenad Medvidovic

Computer Science Department
University of Southern California
Los Angeles, CA 90089-0781
{marija,malek,nbeckman,neno} @usc.edu

Abstract. A distributed software system’s deployment architecture can have a
significant impact on the system’s properties. These properties will depend on
various system parameters, such as network bandwidth, frequencies of software
component interactions, and so on. Existing tools for representing system
deployment lack support for specifying, visualizing, and analyzing different
factors that influence the quality of a deployment, e.g., the deployment’s impact
on the system’s availability. In this paper, we present an environment that
supports flexible and tailorable specification, manipulation, visualization, and
(re)estimation of deployment architectures for large-scale, highly distributed
systems. The environment has been successfully used to explore large numbers
of postulated deployment architectures. It has also been integrated with a
middleware platform to support the exploration of deployment architectures of
actual distributed systems.

Keywords. Software deployment, availability, disconnection, visualization,
environment, middleware

1 Introduction

For any large, distributed system, multiple deployment architectures (i.e.,
distributions of the system’s software components onto its hardware hosts, see Fig. 1.)
will be typically possible. Some of those deployment architectures will be more
effective than others in terms of the desired system characteristics such as scalability,
evolvability, mobility, and dependability. Availability is an aspect of dependability,
defined as the degree to which the system is operational and accessible when required
for use [5]. In the context of distributed environments, where a most common cause
of (partial) system inaccessibility is network failure [17], we define availability as the
ratio of the number of successfully completed inter-component interactions in the
system to the total number of attempted interactions over a period of time. In other
words, availability in distributed systems is greatly affected by the properties of the
network, including its reliability and bandwidth.

W. Emmerich and A.L. Wolf (Eds.): CD 2004, LNCS 3083, pp. 1-17, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 Marija Mikic-Rakic et al.

Maximizing the availability of a given system may thus require the system to be
redeployed such that the most critical, frequent, and voluminous interactions occur
either locally or over reliable and capacious network links. However, finding the
actual deployment architecture that maximizes a system’s availability is an
exponentially complex problem that may take years to resolve for any but very small
systems [11]. Also, even a deployment architecture that increases the system’s current
availability by a desired amount cannot be easily found because of the many
parameters that influence this task: number of hardware hosts, available memory and
CPU power on each host, network topology, capacity and reliability of network links,
number of software components, memory and processing requirements of each
component, their configuration (i.e., software topology), frequency and volume of
interaction among the components, and so forth. A naive solution to this problem
would be to keep redeploying the actual system that exhibits poor availability until an
adequate deployment architecture is found. However, this would be prohibitively
expensive. A much more preferable solution is to develop a means of modeling the
relevant system parameters, estimating the deployment architecture based on these
parameters in a manner that produces the desired (increase in) availability, and
assessing the estimated architecture in a controlled setting, prior to changing the
actual deployed system.

In this paper, we discuss a tailorable environment developed precisely for that
purpose. The environment, called DeSi, supports specification, manipulation,
visualization, and (re)estimation of deployment architectures for large-scale, highly
distributed systems. DeSi allows an engineer to rapidly explore the space of possible
deployments for a given system (real or postulated), determine the deployments that
will result in greatest
improvements in availability
(while, perhaps, requiring the
smallest changes to the current
deployment architecture), and
assess a system’s sensitivity to
and visualize changes in
specific parameters (e.g., the
reliability of a particular
network link) and deployment
constraints (e.g., two
components must be located
on different hosts). We have
provided a facility that

Fig. 1. Examp.le: deployment architegture: A software automatically generates large
system comprising 40 components is deployed onto
five hosts. The dotted lines represent host numbers of deployment
interconnectivity; filled lines represent software Scenarios and have evaluated
component interaction paths different aspects of DeSi using
this facility. DeSi also allows
one to easily integrate, evaluate, and compare different algorithms targeted at
improving system availability [11] in terms of their feasibility, efficiency, and
precision. We illustrate this support by showing the integration of six such algorithms.

A Tailorable Environment for Assessing the Quality of Deployment Architectures 3

DeSi also provides a simple API that allows its integration with any distributed
system platform (i.e., middleware) that supports component deployment at runtime.
We demonstrate this support by integrating DeSi with the Prism-MW middleware
[10]. Finally, while availability has been our focus to date, DeSi’s architecture is
flexible enough to allow exploration of other system characteristics (e.g., security,
fault-tolerance, and so on).

The remainder of the paper is organized as follows. Section 2 defines the problem
of increasing the availability of distributed systems, and overviews six different
algorithms we have developed for this purpose. Section 3 highlights the related work.
Section 4 discusses the architecture, implementation, and usage of the DeSi
environment. Evaluation of DeSi is presented in Section 5. The paper concludes with
a discussion of future work.

2 Background

2.1 Problem Description

The distribution of software components onto hardware nodes (i.e., a system’s
software deployment architecture, illustrated in Fig. 1) greatly influences the system’s
availability in the face of connectivity losses. For example, components located on the
same host will be able to communicate regardless of the network’s status; components
distributed across different hosts might not. However, the reliability (i.e., rate of
failure) of connectivity among the hardware nodes on which the system is deployed
may not be known before the deployment and may change during the system’s
execution. The frequencies of interaction among software components may also be
unknown. For this reason, the current software deployment architecture may be ill-
suited for the given state of the “target” hardware environment. This means that a
redeployment of the software system may be necessary to improve its availability.
The critical difficulty in achieving this task lies in the fact that determining a software
system’s deployment architecture that will maximize its availability for the given
target environment (referred to as optimal deployment architecture) is an
exponentially complex problem.

In addition to the characteristics of hardware connectivity and software
interaction, there are other constraints on a system’s redeployment, including the
available memory on each network host, the required memory for each software
component, the size of data exchanged between software components, the bandwidth
of each network link, and possible restrictions on component locations (e.g., a
component may be fixed to a selected host, or two components may not be allowed to
reside on the same host). Fig.2 shows a formal model that captures the system
properties and constraints, and a formal definition of the problem we are addressing.
The mem,,,, function captures the required memory for each component. The
frequency of interaction between any pair of components is captured via the freq
function, and the average size of data exchanged between them is captured via the
evt_size function. Each host’s available memory is captured via the mem;,,,, function.

4 Marija Mikic-Rakic et al.

The reliability of the link between any pair of hosts is captured via the rel function,
and the network bandwidth via the bw function. Using the Joc function, deployment of
any component can be restricted to a subset of hosts, thus denoting a set of allowed
hosts for that component. Using the colloc function, constraints on collocation of
components can be specified.

The definition of the problem contains the criterion function 4, which formally
describes a system’s availability as the ratio of the number of successfully completed
interactions in the system to the total number of attempted interactions. Function f
represents the exponential number of the system’s candidate deployments. To be
considered valid, each candidate deployment must satisfy the four stated conditions.
The first condition states that the sum of memories of the components deployed onto
a given host may not exceed the host’s available memory. The second condition states
that the total volume of data exchanged across any link between two hosts may not
exceed the link’s effective bandwidth, which is the product of the link’s actual
bandwidth and its reliability. The third condition states that a component may only be
deployed onto a host that belongs to a set of allowed hosts for that component,

Model
Given:

(1) aset C of n components (»=|c|) and three functions freq:CxC =R, evt_size:CxC—>R, and mem,,,, :C >R
0 i ¢i=c, 0 ¢ =
if a=c] evt_size(c,,cl)=(f a=c]

frequency of communicaton between c; and ¢ ;i ci#c; avg size of data c; and ¢, exchange if ¢ #c 5

Frea(c,nc;) =[

mem,,,,(c) = required memory for ¢

(2) a set H of k hardware nodes (k =|1]) and three functions rel : H x H >R, bw: H x H > R, and mem,,, :H—>R
[1 if h=h, [m if h=h]
rel(h,,h;)=| 0 if h, is not connected to hy bw(h,,h;)=| 0 if h, is not connected to h;
reliability of the link between h, and h, if h #h, bandwidth of the link between h, and h, if h, #h,
mem,, (h) = available memory on host h

(3) Two functions that restrict locations of software components loc:CxH —{0,1} colloc: CxC — {-1,0.1}

1 if ¢, can be deployed onto h, =1 if ¢, cannot be on the same host as c,]

1 g 10 be 4 e
0 if ¢, cannot be deployed onto h i i cishas on:theisime: hostias

loc(c;,h;) =(J colloc(c,,¢;) =

0 if there are no restrictions on collocation of c, and ¢ J

Problem

Problem:
Find a function f :C — H such that the system’s overall availability

33 (reatei ;) * rel(£(c,). (e,)

A defined as 4 =111 is imi and the ing four conditions are satisfied:

i ifreq(ci +€;)

=

(1) Vie[l,k][\ije[l,n] fle;)=h,

Zmemmp (c;)) < mem,,, (h,))

(Vie[l,n] Vme[l+1,n])
(2) (Vie[Lk] Vjeli+lk]) where f(c)=h nf(en)=h, where data_vol and effective_bw are defined as follows:
[gdata _vol(c,.c,) < effective _bw(h,.h,)]
data _vol(c,,c,) = freq(c, .c,)*evt _size(c,,c,) effective _bw(h, Jh,) =rel(h, Jhy)*bwih, b))
(3) Vielln] loc(c,;, f(c,;)) =1
(4) Vie[l,n) Vjeli+l,n] (colloc(c,.,c,): N=(f(c)= f(cj)) (colloc(c,,ci) =-1)=(f(c)# f(c;)

In the most general case, the number of possible functions f is k", However, note that some of these deployments may not satisfy
one or more of the above four conditions.

Fig. 2. Formal statement of the problem

A Tailorable Environment for Assessing the Quality of Deployment Architectures 5

specified via the loc function. Finally, the fourth condition states that two components
must be deployed onto the same host (or on different hosts) if required by the colloc
function.

2.2 Algorithms

In this section we briefly describe six algorithms we have developed for increasing a
system’s availability by calculating a new deployment architecture. A detailed
performance comparison of several of these algorithms is given in [11].

Exact Algorithm: This algorithm tries every possible deployment, and selects the
one that has maximum availability and satisfies the constraints posed by the memory,
bandwidth, and restrictions on software component locations. The exact algorithm
guarantees at least one optimal deployment (assuming that at least one deployment is
possible). The complexity of this algorithm in the general case (i.e., with no
restrictions on component locations) is O(k"), where k is the number of hardware
hosts, and » the number of software components. By fixing a subset of m components
to selected hosts, the complexity reduces to O(k"™).

Unbiased Stochastic Algorithm: This algorithm generates different deployments by
randomly assigning each component to a single host from the set of available hosts
for that component. If the randomly generated deployment satisfies all the constraints,
the availability of the produced deployment architecture is calculated. This process
repeats a given number of times and the deployment with the best availability is
selected. As indicated in Fig. 2, the complexity of calculating the availability for each
valid deployment is O(n°), resulting in the same complexity of the overall algorithm.

Biased Stochastic Algorithm: This algorithm randomly orders all the hosts and all
the components. Then, going in order, it assigns as many components to a given host
as can fit on that host, ensuring that all of the constraints are satisfied. Once the host is
full, the algorithm proceeds with the same process for the next host in the ordered list
of hosts, and the remaining unassigned components in the ordered list of components,
until all components have been deployed. This process is repeated a desired number
of times, and the best obtained deployment is selected. Since it needs to calculate the
availability for every deployment, the complexity of this algorithm is O(#?).

Greedy Algorithm: This algorithm incrementally assigns software components to the
hardware hosts. At each step of the algorithm, the goal is to select the assignment that
will maximally contribute to the availability function, by selecting the “best” host and
“best” software component. Selecting the best hardware host is performed by
choosing a host with the highest sum of network reliabilities with other hosts in the
system, and the highest memory capacity. Similarly, selecting the best software
component is performed by choosing the component with the highest frequency of
interaction with other components in the system, and the lowest required memory.
Once found, the best component is assigned to the best host, making certain that the
four constraints are satisfied. The algorithm proceeds with searching for the next best
component among the remaining components, until the best host is full. Next, the

6 Marija Mikic-Rakic et al.

algorithm selects the best host among the remaining hosts. This process repeats until
every component is assigned to a host. The complexity of this algorithm is O(n3) [11].

Clustering Algorithm: This algorithm groups software components and physical
hosts into a set of component and host clusters, where all members of a cluster are
treated as a single entity. For example, when a component in a given cluster needs to
be redeployed to a new host, all of the cluster’s member components are redeployed.
The algorithm clusters components with high frequencies of interaction, and hosts
with high connection reliability. Clustering can significantly reduce the size of the
redeployment problem; it also has the potential to increase the availability of a
system. For example, connectivity-based clustering in peer-to-peer networks
improves the quality of service by reducing the cost of messaging [15].

Decentralized Algorithm: The above algorithms assume the existence of a central
host with reliable connections to every other host in the system. This assumption does
not hold in a wide range of distributed systems (e.g., ad-hoc mobile networks),
requiring a decentralized solution. Our decentralized redeployment algorithm [8]
leverages a variation of the auction algorithm, in which each hosts acts as an agent
and may conduct or participate in auctions. Each host’s agent initiates an auction for
the redeployment of its local components, assuming none of its neighboring (i.e.,
connected) hosts is already conducting an auction. The auction initiation is done by
sending to all the neighboring hosts a message that carries information about a
component (e.g., name, size, and so on). The agents receiving this message have a
limited time to enter a bid on the component before the auction closes. The bidding
agent on a given host calculates an initial bid for the auctioned component, by
considering the frequency and volume of interaction between components on its host
and the auctioned component. In each bid message, the bidding agent also sends
additional local information, including its host’s network reliability and bandwidth
with neighboring hosts. Once the auctioneer has received all the bids, it calculates the
final bid based on the received information. The host with the highest bid is selected
as the winner. If the winner has enough free memory and sufficient bandwidth to host
the auctioned component, then the component is redeployed to it and the auction is
closed. If this is not the case, then the winner and the auctioneer attempt to find a
component on the winner host to be traded (swapped) with the auctioned component.
The complexity of this algorithm is O(k*n’).

3 Related Work

This section briefly outlines several research areas and approaches relevant to our
work on DeSi: software architectures, disconnected operation, software deployment,
software visualization, and visual software environments.

Software architectures provide high-level abstractions for representing structure,
behavior, and key properties of a software system [14]. They are described in terms of
components, which describe the computations and state of a system; connectors,
which describe the rules and mechanisms of interaction among the components; and

A Tailorable Environment for Assessing the Quality of Deployment Architectures 7

configurations, which define topologies of components and connectors. DeSi
leverages an architectural model of a distributed system, including its deployment
information. In our approach, a component represents the smallest unit of
deployment.

Disconnected operation refers to the continued functioning of a distributed system
in the (temporary) absence of network connectivity. We have performed an extensive
survey of existing disconnected operation approaches, and provided a framework for
their classification and comparison [12]. One of the techniques for supporting
disconnected operation is (re)deployment, which is a process of installing, updating,
or relocating a distributed software system.

Carzaniga et. al. [1] provide an extensive comparison of existing software
deployment approaches. They identify several issues lacking in the existing
deployment tools, including integrated support for the entire deployment lifecycle. An
exception is Software Dock [4], which has been proposed as a systematic framework
that provides that support. Software Dock is a system of loosely coupled, cooperating,
distributed components. It provides software deployment agents that travel among
hosts to perform software deployment tasks. Unlike DeSi, however, Software Dock
does not focus on visualizing, automatically selecting, or evaluating a system’s
deployment architecture.

UML [13] is the primary notation for the visual modeling of today’s software
systems. UML’s deployment diagram provides a standard notation for representing a
system’s software deployment architecture. Several recent approaches extend this
notation via stereotypes [3,7]. However, using UML to visualize deployment
architectures has several drawbacks: UML’s deployment diagrams are static; they do
not depict connections among hardware hosts; and they do not provide support for
representing and visualizing the parameters that affect the key system properties (e.g.,
availability). For these reasons, we have opted not to use a UML-based notation in
DeSi.

There are several examples of visual software development environments that have
originated from industrial and academic research. For example, AcmeStudio [16] is
an environment for modeling, visualizing, and analyzing software architectures.
Environments such as Visual Studio [9] provide a toolset for rapid application
development, testing, and packaging. In our context, the role of the DeSi environment
is to support tailorable, scalable, and platform-independent modeling, visualization,
evaluation, and implementation of highly distributed systems. For these reasons we
opted for using Eclipse [2] in the construction of DeSi. Eclipse is a platform-
independent IDE for Java with support for plug-ins. Eclipse provides an efficient
graphical library (Draw2D) and accompanying graphical editing framework (GEF),
which we leveraged in creating visual representations of deployment architectures in
DeSi.

