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Preface

This volume of the Lecture Notes in Computer Science series contains the pro-
ceedings of the second Working Conference on Component Deployment, which
took place May 20-21, 2004, at the e-Science Institute in Edinburgh, Scotland,
as a collocated event of the International Conference on Software Engineering.

Component deployment addresses what needs to be done after a component
has been developed. Component deployment includes activities such as compo-
nent customization, configuration, integration, activation, de-activation and de-
commissioning. The emerging research community that investigates component
deployment concerns itself with the principles, methods and tools for deployment
activities. The community held its first working conference in Berlin, Germany,
in June 2002. The proceedings were published by Springer-Verlag as volume 2370
of the Lecture Notes in Computer Science series.

The program of this year’s conference consisted of an invited talk and 16
technical paper presentations. The invited talk was given by Patrick Goldsack
of Hewlett Packard Research Laboratories Bristol, UK. He presented the Smart-
Frog component deployment framework that HP released as Open Source. The
technical papers were carefully selected from a total of 34 submitted papers. Each
paper was thoroughly peer reviewed by at least three members of the program
committee and consensus on acceptance was achieved by means of an electronic
PC meeting.

The conference and these proceedings would not have been possible with-
out the help of a large number of people. Anthony Finkelstein, in his role as
General Chair of ICSE, simplified our task considerably by arranging our use
of the CyberChair electronic submission and reviewing service, as well as han-
dling publicity and registration. We are indebted to ACM SIGSOFT and the
UK e-Science Programme for generously providing support for the conference,
and to Malcolm Atkinson and Dave Berry at the e-Science Institute for hosting
CD 2004. Particular thanks go to Gill Mandy for handling the local arrange-
ments. Richard van der Stadt of Borbala was always available and responded
incredibly quickly whenever we needed him and, as a result, he eased the paper
submission and review process considerably. Finally, we thank the members of
the program committee for their hard work and careful reviews.

March 2004 Wolfgang Emmerich and Alexander L. Wolf
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A Tailorable Environment for Assessing the Quality of
Deployment Architectures in Highly Distributed Settings

Marija Mikic-Rakic, Sam Malek, Nels Beckman, and Nenad Medvidovic

Computer Science Department
University of Southern California
Los Angeles, CA 90089-0781
{marija,malek,nbeckman,neno} @usc.edu

Abstract. A distributed software system’s deployment architecture can have a
significant impact on the system’s properties. These properties will depend on
various system parameters, such as network bandwidth, frequencies of software
component interactions, and so on. Existing tools for representing system
deployment lack support for specifying, visualizing, and analyzing different
factors that influence the quality of a deployment, e.g., the deployment’s impact
on the system’s availability. In this paper, we present an environment that
supports flexible and tailorable specification, manipulation, visualization, and
(re)estimation of deployment architectures for large-scale, highly distributed
systems. The environment has been successfully used to explore large numbers
of postulated deployment architectures. It has also been integrated with a
middleware platform to support the exploration of deployment architectures of
actual distributed systems.

Keywords. Software deployment, availability, disconnection, visualization,
environment, middleware

1 Introduction

For any large, distributed system, multiple deployment architectures (i.e.,
distributions of the system’s software components onto its hardware hosts, see Fig. 1.)
will be typically possible. Some of those deployment architectures will be more
effective than others in terms of the desired system characteristics such as scalability,
evolvability, mobility, and dependability. Availability is an aspect of dependability,
defined as the degree to which the system is operational and accessible when required
for use [5]. In the context of distributed environments, where a most common cause
of (partial) system inaccessibility is network failure [17], we define availability as the
ratio of the number of successfully completed inter-component interactions in the
system to the total number of attempted interactions over a period of time. In other
words, availability in distributed systems is greatly affected by the properties of the
network, including its reliability and bandwidth.

W. Emmerich and A.L. Wolf (Eds.): CD 2004, LNCS 3083, pp. 1-17, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 Marija Mikic-Rakic et al.

Maximizing the availability of a given system may thus require the system to be
redeployed such that the most critical, frequent, and voluminous interactions occur
either locally or over reliable and capacious network links. However, finding the
actual deployment architecture that maximizes a system’s availability is an
exponentially complex problem that may take years to resolve for any but very small
systems [11]. Also, even a deployment architecture that increases the system’s current
availability by a desired amount cannot be easily found because of the many
parameters that influence this task: number of hardware hosts, available memory and
CPU power on each host, network topology, capacity and reliability of network links,
number of software components, memory and processing requirements of each
component, their configuration (i.e., software topology), frequency and volume of
interaction among the components, and so forth. A naive solution to this problem
would be to keep redeploying the actual system that exhibits poor availability until an
adequate deployment architecture is found. However, this would be prohibitively
expensive. A much more preferable solution is to develop a means of modeling the
relevant system parameters, estimating the deployment architecture based on these
parameters in a manner that produces the desired (increase in) availability, and
assessing the estimated architecture in a controlled setting, prior to changing the
actual deployed system.

In this paper, we discuss a tailorable environment developed precisely for that
purpose. The environment, called DeSi, supports specification, manipulation,
visualization, and (re)estimation of deployment architectures for large-scale, highly
distributed systems. DeSi allows an engineer to rapidly explore the space of possible
deployments for a given system (real or postulated), determine the deployments that
will  result in  greatest
improvements in availability
(while, perhaps, requiring the
smallest changes to the current
deployment architecture), and
assess a system’s sensitivity to
and visualize changes in
specific parameters (e.g., the
reliability of a particular
network link) and deployment
constraints (e.g., two
components must be located
on different hosts). We have
provided a facility that

Fig. 1. Examp.le: deployment architegture: A software automatically generates large
system comprising 40 components is deployed onto
five hosts. The dotted lines represent host numbers of deployment
interconnectivity; filled lines represent software  Scenarios and have evaluated
component interaction paths different aspects of DeSi using
this facility. DeSi also allows
one to easily integrate, evaluate, and compare different algorithms targeted at
improving system availability [11] in terms of their feasibility, efficiency, and
precision. We illustrate this support by showing the integration of six such algorithms.



A Tailorable Environment for Assessing the Quality of Deployment Architectures 3

DeSi also provides a simple API that allows its integration with any distributed
system platform (i.e., middleware) that supports component deployment at runtime.
We demonstrate this support by integrating DeSi with the Prism-MW middleware
[10]. Finally, while availability has been our focus to date, DeSi’s architecture is
flexible enough to allow exploration of other system characteristics (e.g., security,
fault-tolerance, and so on).

The remainder of the paper is organized as follows. Section 2 defines the problem
of increasing the availability of distributed systems, and overviews six different
algorithms we have developed for this purpose. Section 3 highlights the related work.
Section 4 discusses the architecture, implementation, and usage of the DeSi
environment. Evaluation of DeSi is presented in Section 5. The paper concludes with
a discussion of future work.

2 Background

2.1 Problem Description

The distribution of software components onto hardware nodes (i.e., a system’s
software deployment architecture, illustrated in Fig. 1) greatly influences the system’s
availability in the face of connectivity losses. For example, components located on the
same host will be able to communicate regardless of the network’s status; components
distributed across different hosts might not. However, the reliability (i.e., rate of
failure) of connectivity among the hardware nodes on which the system is deployed
may not be known before the deployment and may change during the system’s
execution. The frequencies of interaction among software components may also be
unknown. For this reason, the current software deployment architecture may be ill-
suited for the given state of the “target” hardware environment. This means that a
redeployment of the software system may be necessary to improve its availability.
The critical difficulty in achieving this task lies in the fact that determining a software
system’s deployment architecture that will maximize its availability for the given
target environment (referred to as optimal deployment architecture) is an
exponentially complex problem.

In addition to the characteristics of hardware connectivity and software
interaction, there are other constraints on a system’s redeployment, including the
available memory on each network host, the required memory for each software
component, the size of data exchanged between software components, the bandwidth
of each network link, and possible restrictions on component locations (e.g., a
component may be fixed to a selected host, or two components may not be allowed to
reside on the same host). Fig.2 shows a formal model that captures the system
properties and constraints, and a formal definition of the problem we are addressing.
The mem,,,, function captures the required memory for each component. The
frequency of interaction between any pair of components is captured via the freq
function, and the average size of data exchanged between them is captured via the
evt_size function. Each host’s available memory is captured via the mem;,,,, function.
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The reliability of the link between any pair of hosts is captured via the rel function,
and the network bandwidth via the bw function. Using the Joc function, deployment of
any component can be restricted to a subset of hosts, thus denoting a set of allowed
hosts for that component. Using the colloc function, constraints on collocation of
components can be specified.

The definition of the problem contains the criterion function 4, which formally
describes a system’s availability as the ratio of the number of successfully completed
interactions in the system to the total number of attempted interactions. Function f
represents the exponential number of the system’s candidate deployments. To be
considered valid, each candidate deployment must satisfy the four stated conditions.
The first condition states that the sum of memories of the components deployed onto
a given host may not exceed the host’s available memory. The second condition states
that the total volume of data exchanged across any link between two hosts may not
exceed the link’s effective bandwidth, which is the product of the link’s actual
bandwidth and its reliability. The third condition states that a component may only be
deployed onto a host that belongs to a set of allowed hosts for that component,

Model
Given:

(1) aset C of n components (»=|c|) and three functions freq:CxC =R, evt_size:CxC—>R, and mem,,,, :C >R
0 i ¢i=c, 0 ¢ =
if  a=c ] evt_size(c,,cl)=( f  a=c ]

frequency of communicaton between c; and ¢ ;i ci#c; avg size of data c; and ¢, exchange if ¢ #c 5

Frea(c,nc;) =[

mem,,,,(c) = required memory for ¢

(2) a set H of k hardware nodes (k =|1]) and three functions rel : H x H >R, bw: H x H > R, and mem,,, :H—>R
[1 if h=h, [m if h=h ]
rel(h,,h;)=| 0 if h, is not connected to hy bw(h,,h;)=| 0 if h, is not connected to h;
reliability of the link between h, and h, if h #h, bandwidth of the link between h, and h, if h, #h,
mem,, (h) = available memory on host h

(3) Two functions that restrict locations of software components loc:CxH —{0,1} colloc: CxC — {-1,0.1}

1 if ¢, can be deployed onto h, =1 if ¢, cannot be on the same host as c, ]

1 g 10 be 4 e
0 if ¢, cannot be deployed onto h i i cishas on:theisime: hostias

loc(c;,h;) =( J colloc(c,,¢;) =

0 if there are no restrictions on collocation of c, and ¢ J

Problem

Problem:
Find a function f :C — H such that the system’s overall availability

33 (reatei ;) * rel(£(c,). (e, )

A defined as 4 =111 is imi and the ing four conditions are satisfied:

i ifreq(ci +€;)

=

(1) Vie[l,k][\ije[l,n] fle;)=h,

Zmemmp (c;)) < mem,,, (h, ))

(Vie[l,n] Vme[l+1,n])
(2) (Vie[Lk] Vjeli+lk]) where f(c)=h nf(en)=h, where data_vol and effective_bw are defined as follows:
[gdata _vol(c,.c,) < effective _bw(h,.h, )]
data _vol(c,,c,) = freq(c, .c,)*evt _size(c,,c,) effective _bw(h, Jh,) =rel(h, Jhy)*bwih, b))
(3) Vielln]  loc(c,;, f(c,;)) =1
(4) Vie[l,n) Vjeli+l,n] (colloc(c,.,c,): N=(f(c)= f(cj)) (colloc(c,,ci) =-1)=(f(c)# f(c;)

In the most general case, the number of possible functions f is k", However, note that some of these deployments may not satisfy
one or more of the above four conditions.

Fig. 2. Formal statement of the problem
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specified via the loc function. Finally, the fourth condition states that two components
must be deployed onto the same host (or on different hosts) if required by the colloc
function.

2.2 Algorithms

In this section we briefly describe six algorithms we have developed for increasing a
system’s availability by calculating a new deployment architecture. A detailed
performance comparison of several of these algorithms is given in [11].

Exact Algorithm: This algorithm tries every possible deployment, and selects the
one that has maximum availability and satisfies the constraints posed by the memory,
bandwidth, and restrictions on software component locations. The exact algorithm
guarantees at least one optimal deployment (assuming that at least one deployment is
possible). The complexity of this algorithm in the general case (i.e., with no
restrictions on component locations) is O(k"), where k is the number of hardware
hosts, and » the number of software components. By fixing a subset of m components
to selected hosts, the complexity reduces to O(k"™).

Unbiased Stochastic Algorithm: This algorithm generates different deployments by
randomly assigning each component to a single host from the set of available hosts
for that component. If the randomly generated deployment satisfies all the constraints,
the availability of the produced deployment architecture is calculated. This process
repeats a given number of times and the deployment with the best availability is
selected. As indicated in Fig. 2, the complexity of calculating the availability for each
valid deployment is O(n°), resulting in the same complexity of the overall algorithm.

Biased Stochastic Algorithm: This algorithm randomly orders all the hosts and all
the components. Then, going in order, it assigns as many components to a given host
as can fit on that host, ensuring that all of the constraints are satisfied. Once the host is
full, the algorithm proceeds with the same process for the next host in the ordered list
of hosts, and the remaining unassigned components in the ordered list of components,
until all components have been deployed. This process is repeated a desired number
of times, and the best obtained deployment is selected. Since it needs to calculate the
availability for every deployment, the complexity of this algorithm is O(#?).

Greedy Algorithm: This algorithm incrementally assigns software components to the
hardware hosts. At each step of the algorithm, the goal is to select the assignment that
will maximally contribute to the availability function, by selecting the “best” host and
“best” software component. Selecting the best hardware host is performed by
choosing a host with the highest sum of network reliabilities with other hosts in the
system, and the highest memory capacity. Similarly, selecting the best software
component is performed by choosing the component with the highest frequency of
interaction with other components in the system, and the lowest required memory.
Once found, the best component is assigned to the best host, making certain that the
four constraints are satisfied. The algorithm proceeds with searching for the next best
component among the remaining components, until the best host is full. Next, the
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algorithm selects the best host among the remaining hosts. This process repeats until
every component is assigned to a host. The complexity of this algorithm is O(n3 ) [11].

Clustering Algorithm: This algorithm groups software components and physical
hosts into a set of component and host clusters, where all members of a cluster are
treated as a single entity. For example, when a component in a given cluster needs to
be redeployed to a new host, all of the cluster’s member components are redeployed.
The algorithm clusters components with high frequencies of interaction, and hosts
with high connection reliability. Clustering can significantly reduce the size of the
redeployment problem; it also has the potential to increase the availability of a
system. For example, connectivity-based clustering in peer-to-peer networks
improves the quality of service by reducing the cost of messaging [15].

Decentralized Algorithm: The above algorithms assume the existence of a central
host with reliable connections to every other host in the system. This assumption does
not hold in a wide range of distributed systems (e.g., ad-hoc mobile networks),
requiring a decentralized solution. Our decentralized redeployment algorithm [8]
leverages a variation of the auction algorithm, in which each hosts acts as an agent
and may conduct or participate in auctions. Each host’s agent initiates an auction for
the redeployment of its local components, assuming none of its neighboring (i.e.,
connected) hosts is already conducting an auction. The auction initiation is done by
sending to all the neighboring hosts a message that carries information about a
component (e.g., name, size, and so on). The agents receiving this message have a
limited time to enter a bid on the component before the auction closes. The bidding
agent on a given host calculates an initial bid for the auctioned component, by
considering the frequency and volume of interaction between components on its host
and the auctioned component. In each bid message, the bidding agent also sends
additional local information, including its host’s network reliability and bandwidth
with neighboring hosts. Once the auctioneer has received all the bids, it calculates the
final bid based on the received information. The host with the highest bid is selected
as the winner. If the winner has enough free memory and sufficient bandwidth to host
the auctioned component, then the component is redeployed to it and the auction is
closed. If this is not the case, then the winner and the auctioneer attempt to find a
component on the winner host to be traded (swapped) with the auctioned component.
The complexity of this algorithm is O(k*n’).

3 Related Work

This section briefly outlines several research areas and approaches relevant to our
work on DeSi: software architectures, disconnected operation, software deployment,
software visualization, and visual software environments.

Software architectures provide high-level abstractions for representing structure,
behavior, and key properties of a software system [14]. They are described in terms of
components, which describe the computations and state of a system; connectors,
which describe the rules and mechanisms of interaction among the components; and
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configurations, which define topologies of components and connectors. DeSi
leverages an architectural model of a distributed system, including its deployment
information. In our approach, a component represents the smallest unit of
deployment.

Disconnected operation refers to the continued functioning of a distributed system
in the (temporary) absence of network connectivity. We have performed an extensive
survey of existing disconnected operation approaches, and provided a framework for
their classification and comparison [12]. One of the techniques for supporting
disconnected operation is (re)deployment, which is a process of installing, updating,
or relocating a distributed software system.

Carzaniga et. al. [1] provide an extensive comparison of existing software
deployment approaches. They identify several issues lacking in the existing
deployment tools, including integrated support for the entire deployment lifecycle. An
exception is Software Dock [4], which has been proposed as a systematic framework
that provides that support. Software Dock is a system of loosely coupled, cooperating,
distributed components. It provides software deployment agents that travel among
hosts to perform software deployment tasks. Unlike DeSi, however, Software Dock
does not focus on visualizing, automatically selecting, or evaluating a system’s
deployment architecture.

UML [13] is the primary notation for the visual modeling of today’s software
systems. UML’s deployment diagram provides a standard notation for representing a
system’s software deployment architecture. Several recent approaches extend this
notation via stereotypes [3,7]. However, using UML to visualize deployment
architectures has several drawbacks: UML’s deployment diagrams are static; they do
not depict connections among hardware hosts; and they do not provide support for
representing and visualizing the parameters that affect the key system properties (e.g.,
availability). For these reasons, we have opted not to use a UML-based notation in
DeSi.

There are several examples of visual software development environments that have
originated from industrial and academic research. For example, AcmeStudio [16] is
an environment for modeling, visualizing, and analyzing software architectures.
Environments such as Visual Studio [9] provide a toolset for rapid application
development, testing, and packaging. In our context, the role of the DeSi environment
is to support tailorable, scalable, and platform-independent modeling, visualization,
evaluation, and implementation of highly distributed systems. For these reasons we
opted for using Eclipse [2] in the construction of DeSi. Eclipse is a platform-
independent IDE for Java with support for plug-ins. Eclipse provides an efficient
graphical library (Draw2D) and accompanying graphical editing framework (GEF),
which we leveraged in creating visual representations of deployment architectures in
DeSi.



