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PREFACE

The discrete state-space, continuous parameter Markov process
has been used extensively to construct stochastic models in a vari-
ety of disciplines like biology, chemistry, electrical engineering,
medicine, physics, sociology etc. Most of the books dealing with
discrete Markov processes concentrate either on the exposition of
their mathematical properties e.g., Chung (1967), Cinlar (1975),
Feller (1972), losifescu (1980), or provide their introductory pro-
perties e.g., Bhat (1972), Karlin and Taylor (1975), Medhi (1982),
Parzen (1962). A scientist who employs a finite Markov process to
construct a stochastic model has to know, not only the basic assum-
ptions and their consequences, but also the statistical properties
and procedures of statistical inference for such processes. This

book is intended to meet this requirement.

We discuss the theoretical properties of a finite state-space,
continuous parameter Markov process in the first three chapters.
Thus chapter 1 provides the basic definitions and establishes the
equivalence of various versions of the Markov property. The analy-
tic properties of the transition probabilities, their evaluation
and the properties of sample functions are discussed in chapter 2.
A detailed discussion of the classification of states of a discrete
Markov process is provided in chapter 3 which also discusses the
asymptotic behaviour of the transition probabilities. The probabi-
lity generating function, moment generating function and the first
two moments of random variables like duration of stay in a particu-
lar state, transition counts for reducible and irreducible Markov
processes are discussed in chapter 4. The last and the longest

chapter, chapter 5, develops the asymptotic properties of maximum



vi

likelihood estimators as well as asymptotic theory of likelihood
ratio tests of hypotheses. Finally we provide thirty problems
which are constructed on the basis of research papers, some old
and some very recent. These problems are based on concepts intro-
duced in two or more chapters and we have therefore listed them

at the end of the book.

It is expected that our reader is familiar with basic conce-
pts of probability theory as discussed in Bhat (1981) or in
chapters III, IV and VII of Loeve (1968). A good acquaintance
with matrix algebra and the contents of chapter V and VI of Rao
(1973) is desirable for understanding our chapter 5 on Statistical
Inferenee. This book can be used for a one semester course for

advanced level graduate/post graduate students.

' Each chapter in the book has been divided into sections which
are serially numbered. The definitions, equations, lemmas, theorems,
corollaries and examples are all serially numbered in each section.

A reference to equation (c) in a section is to the c-th equation of
the same section. The equation (b.c) stands for the c-th equation

in b-th section of the same chapter and the equation (a.b.c) refers
to c-th equation of b-th section of the a-th chapter. The same

scheme applies to definitions, lemmas etc.

The book was initiated and almost completed when one of the
authors (5MM) was visiting the Department of Statistics, University
of Poona as a Teacher Fellow from Bangalore University, Bangalore.
We thank Dr A. V. Kharshikar and Dr M. S. Prasad for the discussions
we had with them. We also thank Mrs. A. V. Sabane for her careful

typing of the manuscript.

University of Poona, S. R. ADKE

Pane = 7, Indis S. M. MANJUNATH
May, 1984. T
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CHAPTER 1

DISCRETE MARKOV PROCESSES : DEFINITIONS

1. INTRODUCTION

A large number of natural phenomena which evolve in time have
indeterministic components. Such phenomena can be described in
terms of an infinite collection of random variables (r.v.s) X(t),
t € T, all defined on the same probability space (9, IF, P) and
indexed by a parameter t taking values in an infinite index set

T; i.e., in terms of the stochastic process {X(t), t ¢ T}.

The classical theory of Statistics mainly dealswith experiments
which are repeatable under identical conditions. The outcomes of
such experiments can be modelled in a fairly satisfactory manner by
a sequence {Xn, n=1, 2, ...} of independent and identically distri-
buted r.v.s. The possibility of dependence between successive r.v.s
led Markov (1906) to introduce " chains " of random variables which
are now well-known as llarkov chains. The sequence of independent
and identically distributed r.v.s and the Markov chain are stochastic
processes with the set of non-negative integers as the index set.
However, the following examples illustrate that it is necessary to
consider stochastic processes indexed by a linearly ordered index

set like the non-negative half of the real line.

Example 1 : Consider a telephone exchange with a finite number M
of channels. Calls arrive at the exchange at random imstants of
time and a call is connected only if a free channel is available.
The availability of a channel depends on the durations of conversa-
tions which are also of a random nature. Let X(t) denote the

number of busy channels at the instant or the epoch t, 0 < t < .

The fluctuations in the random number X(t) of busy channels as t

progresses on [0, «) are of interest to the design and maintenance
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engineers. 0One is obviously dealing with the stochastic process
{X(t), 0 <t < =} with [0, ») as the index set and {0,1,2,..., M}
as the set of possible values of X(t), t ¢ [0, ). This example

was first discussed by Kolmogorov (1931).

Example 2 : A patient suffering from a disease like cancer can be
in a number of different states. The initial state El is the
state in which a person is identified as a cancer patient. Depen-
ding on the state of his health and the treatment received by him,
the patient may move to state Ez of recovery or to one of the
terminal states E} or E4 representing the death of the patient due
to cancer or some other cause respectively. A patient may also
oscillate between El and E2 before he is finally claimed by E3
or E4 . The state of the patient can be described in terms of the
random variable X(t) which equals 1, 2, 3 or 4 according as the

state of the patient is E E, or E,. We are thus dealing

10 B Egor by
with the stochastic process {X(t), 0 < t < «} with X(t) taking
values in the set {1, 2, 3, 4} . This example was discussed by

Fix and Neyman (1951).

Example 3 : More recently, Wasserman (1980) has discussed the dev-
elopment of relationships between a group of say M persons. In his
most general model, Wasserman defines Xij(t) to be one or zero
according as a ' relationship ' exists or does not exist at epoch t
between the i-th and j-th individuals of the group, i # j,

i, j =1, ..., M. By convention we take Xii(t) =0, te [0, © .
The entire social network of relationships at any instant t of time
can be represented by the M x M matrix X(t) = (( Xij(t) )) of
binary elements. The total number cof possible bipary matrices re-
presenting the social network at any instant t is ZM(M_l).
Wasserman is thus dealing with a matrix-valued stochastic process

{x(t), 0 <t < «} indexed by the continuous time parameter t e[0,c)
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As indicated earlier, a stochastic process {X(t), t ¢ T} is an
infinite collection of random variables defined on the same probability
space (Q, IF, P). We shall take the index set T to be either the set
Zt of non-negative integers or the non-negative half RT = [0, «) of
the real line R . The parameter t is usually referred to as the
time parameter and a point of the index set is called an epoch. The
union of range-spaces of the random variables- X(t), t ¢ T , is called
the state-space S of the stochastic process. If X(t) = j ¢ S, then
we say that the stochastic process is in gtate j at epoch t.

The state-spaces of the stochastic processes in the three examples
given above are finite. A process with a finite state-space will be
called a finite stochastic process. This book deals with finite
stochastic processes which have the Markov property. Loosely speaking,
a process has the Markov property if the knowledge of its state at an
epocch t is sufficient to determine the probability distribution of
X(u), u > t; any additional information about X(s), s < t, being

irrelevant.

In section 2, we define and describe some properties of a ilarkov
chain {Xn, n e Z+} which are needed in the study of finite Markov
processes. The Poisson process and a first definition of a Markov
process are introduced in section 3. In section 4, we discuss the
different definitions of a Markov process and establish their mutual
equivalence and equivalence with the definition introduced in section
3. The strong Markov property is described in section 5. In the last
section 6 of this chapter we discuss some properties of the finite

dimensional distributions of a finite Markov process.

2. MARKOV _CHAINS

Most of the classical theory of Statistics deals with a sequence
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{Xn, n e Z+} of independent and identically distributed (i.i.d.)
r.v.s. Suppose the r.v.s Xn’ ne Z* are non-negative and integer
valued. They are said to be identically distributed iff for every

+
nel,

. Pr[xn =Jj] = pj’ J=0,1,2, ...,
where pj >0, ¢ z" and z pj = 1. They are independently
j=0
distributed iff for every n > 2,

n
PE(Xg = J1s wees ¥ = o1 = i{i Pr[X_ = j_]

for all ji, ey J € A

A Markov chain constitutes the first weakening of the assum-
ption of i.i.d. nature of the r.v.s. Suppose then that {Xn, ne Z+}
is a sequence of discrete r.v.s taking values in a finite or a
countably infinite subset S of the real line R. Such a sequence

is said to constitute a Markov chain with state-space S iff for

every n > 1, jos Jys eves J4g € S,

Pr[X = J

n+1 3 ey Xn = jn]

n+1 |Xo = Jo

Pr[X

n+l ~ jn+l |xn = jn] ? (1)

whenever the conditioning event [XO = Jo’ ceey Xn = jn] on the left
has positive probability. Here we initiate the sequence at n=0 rather
than the usual n = 1, because in the study of stochastic processes, it
is customary to treat n as a time parameter and to regard X0 as the
r.v. representing state of the initial state of the process. It is
for this reason that the distribution of XO is usually known as the

initial distribut:ion.




2. MARKOV CHAINS

Suppose that the initial distribution of a Markov chain

{X , neZ} is specified by
n

I
—
-

PI'[X0 =jl=a,, jeS, a, >0, X

j a. =
J jes J

and let

x
m
wn

a(n, j, k) = Pr(X ., =k|X =3l, d,

+

where a(n, j, k) >0 for each n ¢ Z and

r a(n, j, k) =1, jebS.
keS

A knowledge of {aj, j e S} and {a(n,j,k), n e Z*, j, ke S}
enables us to specify the joint distribution of X , X;,..., X
o’ "1 > "n

+ .
for each n e Z since

Pr[XO =3 ooy X_ =3 ]

Yo’ n n
n-1
= Pr[X, =j,] ri% PEIX g = Joyq | X = dgreees Xo = d.]
n-1
= a;, I oalr, §, dpy) (2)
o r=0

by virtue of the defining equation (1) of the Markov chain.
Example 1 : Ehrenfest Model of Diffusion.

Suppose two urns Ul and U2 contain a total of M balls.
At each trial, a ball is selected at random out of the M balls,
independently of the results of the earlier trials and of the
number of balls in Ul and U2 at the specific trial. The
selected ball is transferred from the urn it is in, to the other

urn. Let Xn denote the number of balls in urn Ul at the end

n
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of the n-th trial. Observe that

where A = + 1 according as the selected ball is from U2 or

n+1

Ul. It is easy to check that the state-space of the sequence

X, ne z*}y is S=1{0, 1, ..., M} and that

Pr[xn+l = jn+1 | Xo = jo’ mee Xn = Jn]
( . . . .
1 - Jn/M , if Jpey = dptls 3, = 0,1,..0, M1,
= jn/M g LF jn+l = jn-l, jn = Yy 2506y M,
0 , otherwise,
|
~ Pr[Xm_l = J(‘H-l I Xn = Jn] »

Thus {Xn, ne Z+} is a Markov chain with state space
S : {0, l’ C.., M} .

In this example observe that for fixed j, k ¢ S ,

,

1-j/M, k = j+1, j = 0,1,..., M-1,
Pr[Xn+l = k |Xn =Jj] = M , k=3=1, j =1,2,00., M,
0 . otherwise ;
{

for all n > 0. In other words, the conditional probability of the
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event [Xn+l = k] , given the event [Xn = j] , does not depend on

n e z*. This observation leads to the following

Definition 1 : A Markov chain {Xn, n g Z+} is said to have

stationary transition probabilities or to be time homogeneous if the

conditional probability Pr[Xn+l = k |Xn = j] does not depend on
neZ forall j, k e S.

Hereinafter, unless otherwise specified, a Markov chain will be

assumed to have stationary transition probabilities. Let
p‘].k = Pr[Xn+1=k|XniJ], j, keSS,

which is the probability of a transition from state j to state k

in one step and is therefore called a one-step transition probability.

These probabilities obviously satisfy the following conditions :

pjk >0, j, ke S, kis pjk =1, jeS.
If the state-space S is finite, we may take S = {1, 2, ..., M}
without loss of generality and arrange Py in the form of a square
matrix P = ((pjk» of order M, whose (j, k) - element in the j-th
row and k-th column is Pi * The matrix P of one-step transition
probabilities is thus a stochastic matrix in the sense of the

following

Definition 2 : A square matrix A of order M is a stochastic

matrix if all its elements ajk are non-negative and for each

M
=1, «uu, M, kil aj, = 1.

We denote the n-step transition probability

" . n .
Pr[Xm+n = k |Xm =jl, j, k€S, ne¢ Al , by p§k) , with the
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obvious convention that

1, if j =k,

(o) _ _
pJ‘k = ij =
o, otherwise |,
and (1) _
pjk = pjk' Observe that
(n+l) _ - .
ij = Pr[Xrn+n+1 = k |Xm = Jj]
= rzs Pr(X ., =T |Xm = 3] Pr[Xm+n+l =k |Xm+n i N szjJ
€
(3)
(n)
rES pjr Prk ? (4)

where (3) 1is a consequence of the theorem of total probabilities
and (4) 1is a consequence of the Markovian nature of the sequence
{X,»ne Z+} . The equation (4) provides us with a recursive way

of calculating the n-step transition probabilities.

One can use the above argument also to establish that

(m) (n) _ (n) (m)
riS pjr Prk  ~ riS pjr Pri (5)

(m+n)
for all my n ¢ Z+, Js k € S . These equations play an important
role in the study of Markov chains and are called the Chapman -
Kolmogorov equations.

If P(n) = ((p§2) ) denotes the matrix of n-step transition

probabilities, then the Chapman-Kolmogorov equations (5) become
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P(n+m) (n) P(m) (m) 5(n)

= P = P P (6)

(n)

in matrix notation. It is obvious that P is also a stochastic
matrix and that in fact it is the n-th power P" of the matrix P

of one-step transition probabilities. In this connection one may
observe that by virtue of equation (2) , the initial distribution and
the one-step transition probabilities of a Markov chain determine the
joint distribution of X_, ..., X for all n ¢ Z* and hence as a
consequence, the joint distribution of any finite subset of the

sequence {Xn, n e Z+} .

An important aspect of the study of a Markov chain is the classi-
fication of its states. We proceed to describe the classification of

the states and refer to Chung (1967) for details.

" A state j leads to a state k, j » k, if there exists an n e Z©

such that PgE) > 0. Thus, by definition, every state leads to itself
(Q) = 1,
JJ

each other. A proper subset C of the state-space is a closed set

if j e C, k ¢ C, implies that pgg) =0 for all n e Z'. The state
space is closed by definition. A closed set C is minimal closed if

as p Two states j and k communicate if they lead to

no proper subset of C is closed. A Markov chain is irreducible iff

its state-space is minimal closed. If*for a state j, pjj = 1, then

J 1s said to be an absorbing state. It is easy to verify that for an

ng)E 0 for all k # j and all n ¢ Al

absorbing state j,

A state j 1is an essential state if it communicates with every

(n)
jk

> 0. A state which is ndl essential is an

state it leads to; i.e. if p > 0 implies the existence of an

+ (m)
m V4 such that .
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inessential state.

Example 2 : Suppose {Xn, n e Z+} is a Markov chain with one-step

transition probability matrix

1 0 0 0
0 /2 1/2 0
R RS V- B 7 B
/4  1/4  1/4 1/4
\ J

It is easy to check that in this chain, state 4 leads to states 1, 2
and 3 but that state 1 does not lead to state 4. Hence state 4 is in-
essential. States 2 and 3 communicate with each other and are essential

states forming a minimal closed set. The state 1 is an absorbing state.

Observe that in Example 1, if we take M = 1, we get the trivial
Markov chain on {0, 1} with Pol = Pio = 1, so that
(2n) (2n+1) +

Poo = 1, p = 0, nelt

Thus the greatest common divisor (g.c.d.) of the set

(n)

{n ]poo >0, n>1} is 2 and therefore state zero may be said to
be periodic with period 2. More generally, a state j is periodic
with period d, if the g.c.d. of the set {n {p§2)> 0, n>1}1s d> 1.

A state j for which d = 1 is called an aperiodic state.

Further classification of states of a Markov chain is based on

the probability of its return to its original state. Define

(1) _
fik = Pk



