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FOREWORD

With the recent advances in numerical methods and computer technology,
an increasing number of internal flows are being simulated on the computer.
Because of the broad range of flow conditions and geometries in these
flows, a large number of different approaches are being pursued. As a
result, objective assessment of the field is difficult. The purpose of
this Symposium is to provide a forum for the interchange of ideas and the
presentation of new results in the field of numerical methods in fluid
mechanics with particular emphasis on computation of internal flows. A
second, but no Tess important goal, is to provide information on the
applicability and limitations of these methods.

The Symposium includes three invited Tectures. One, by Professor
L. S. Langston of the University of Connecticut, is entitled, "Review -
Internal Flow Phenomena." The second, by Professors J. J. McGuirk and
J. H. Whitelaw of Imperial College of Science and Technology, London, is
on "Internal Flows of Relevance to Gas Turbines." The third, by Professor
U. Ghia of the University of Cincinnati, is on "Computation of Viscous
Internal Flows." There are 18 contributed papers in the Symposium. Some
of these are concerned with the application of numerical methods to inter-
nal flows such as those in curved ducts or turbomachinery components. The
remainder are devoted to new or developing numerical techniques relevant
to the analysis of flow in internal passages as well as the design of such
passages to achieve a particular objective. The methods range in complex-
ity from two-dimensional viscous-inviscid interaction to three-dimensional
solution of the Reynolds-averaged Navier-Stokes equations. The Symposium
will conclude with a panel discussion on the "Prospects for Computation of
Three-Dimensional Viscous Internal Flows."

The organizers of the Symposium wish to extend their thanks to the
authors, session chairmen, reviewers, ASME publication and technical
coordination personnel, and the chairmen of the Fluid Machinery and
Fluid Mechanics Committees of the ASME Fluids Engineering Division.

Peter M. Sockol
Symposium Co-Chairman
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COMPUTATION OF VISCOUS FLOWS IN TURBOMACHINERY CASCADES

S

M. Pouagare,

. *k
B. Lakshmlnarayana,

*
T. R. Govindan

Department of Aerospace Engineering
The Pennsylvania State University
University Park, PA 16802

ABSTRACT

The space-marching method was used to predict the
viscous flow field in turbomachinery cascades. Problems
associated with the leading edge stagnation point were
overcome by modifying the streamwise pressure gradient
term in the momentum equation. Analysis and numerical
experiments have proved that for accurate predictions
the grid lines in the physical domain must be nearly or-
thogonal. For staggered cascades a non-periodic grid
system was employed, and appropriate approximations
were used in the place of the periodicity boundary

conditions upstream and downstream of the cascade. The
cases tested first were the laminar flow through a

flat plate cascade at 45° stagger, and through a
symmetric cascade at zero incidence and stagger. The

method was then used to predict the turbulent flow
through compressor cascades composed of NACA 65-series
blades. The predicted drag coefficient, turning angle,
boundary layer momentum thicknesses, and velocity
profiles were compared with experimental data; the
agreement was good in most cases. The solution for
any of the cases presented was obtained in less than
one minute on an IBM 3081.

NOMENCLATURE

a angle of attack

parameters determining the numerical scheme
employed

C chord

Cp drag coefficient 1 2
Cp pressure coefficient (=(p—pl)/§-QQl)
D diffusion term; drag force
E s» Ep,vectors in the governing equations
F >

e specific internal energy

total fluxing energy

Jacobian of the grid transformation
coefficient of thermal conductivity
turbulent length scale in a boundary layer
wake semiwidth

Mach number

streamwise station
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static pressure

assumed initial static pressure

Prandtl number

streamwise velocity

velocity defect at the center of the wake
dependent vector in the governing equations
normal distance from the wall

Reynolds number (= Q;C/Vv)

vector containing the artificial damping
terms

spacing

velocity in the x, y directions, respectively
contravariant velocity component along the
E-coordinate (= Exu + Eyv)

friction velocity

contravariant velocity component along the
n-coordinate (= nyu + n_v)

Cartesian coordinates; kX is the axial
direction, and y the transverse direction
distance from the leading edge measured
along the chordline

angle of the grid lines with the x-coordinate
flow angle (see Fig. 1)

ratio of specific heats

change in the global mass flow

total pressure difference across the cascade
boundary layer thickness

loss coefficient

momentum thickness normalized by C

von Karman constant

stagger angle

molecular viscosity

eddy viscosity

kinematic viscosity

body-fitted coordinate system

metrics in the grid transformation

density
damping coefficients

angle between £ and n grid lines

viscous dissipation terms in the energy
equation

fraction of streamwise pressure gradient
kept implicitly



Superscripts
streamwise station index

vectors in the governing equations in the
computational domain

Subscripts

c correction values

P quantity at the first grid point away from
the wall

ss, ps suction side, pressure side, respectively

TE trailing edge values

xy quantity in (x,y) coordinates

&n quantity in (£,n) coordinates

1, 2 upstream, downstream of the cascade,
respectively

% quantity at the edge of the boundary layer

INTRODUCTION

A knowledge of the flow field through a cascade of
blades is essential for the design of turbomachines.
In the early stages of jet engine development, turbo-
machinery designers depended to a large extent on the
experimental data to derive the performance character-
istics of cascades. However, experimental data is
difficult and time-consuming to obtain. This diffi-
culty has motivated research to predict the performance
of cascades with numerical methods.

In the past two decades, considerable progress has
been made in the prediction of the inviscid flow
through cascades (e.g., Refs. 1, 2). However, much
progress has not been made in predicting the viscous
flow. The existing time-marching algorithms that can
predict the viscous flow are expensive (e.g., Refs.
3,4) .

The boundary layer approximation (e.g., Refs. 5,
6), though economical, is difficult to implement in
internal flows because of the displacement effects of
the boundary layer on the inviscid flow (viscous-
inviscid interaction).

This paper presents an economical and accurate
algorithm for the prediction of the viscous flow
field through turbomachinery cascades. The algorithm
is based on the parabolized Navier-Stokes equations,
which are solved with the space-marching technique
developed by Govindan [7].

The present algorithm requires a knowledge of the
streamwise pressure gradient, as the boundary layer
approximation does; but, unlike the boundary layer
approximation, the present algorithm solves the
equations in the entire flow field, and thus the
viscous-inviscid interaction problem of boundary
layer methods is absent.

Space- (or parabolic-) marching techniques have
been widely used for the prediction of the flow through
curved channels. However, the prediction of the flow
field in cascades presents difficulties that are not
found in the prediction of the flow field in curved
channels. The most distinct differences are the
following:

1. Periodicity of the flow must be enforced upstream
and downstream of a cascade.

2. The stagnation point at the leading edge of a
cascade causes strong streamwise pressure
gradients.

3. The rapid change in the boundary shape near the
leading edge of a cascade introduces additional
problems.

4. The grid cannot be kept orthogonal everywhere in
a cascade.

Some of the problems encountered in the solution
of the flow field in curved channels are especially
prominent in the case of cascades. These are the
following:

1. A strong overall pressure rise (or drop) from inlet
to exit.

2. The flow field perceives two distinctly different
length scales; the inviscid one (spacing), and the
viscous one (boundary layer thickness). To capture
both of them a large number of grid points must be
used in the transverse direction.

3. A significant part of the flow field is inviscid,
and the viscous terms drop out of the equations.
Therefore, in that region, the space-marching
method is essentially solving the Euler equationms.
This makes the problem of uncoupled odd and even
points, and the resulting numerical instabilities,
more severe than in the case where the viscous
terms are present.

The above mentioned problems must be overcome for
the accurate prediction of the viscous flow field in
cascades. These problems as well as ways to overcome
them will be discussed in this paper.

The method was first tested in two hypothetical
cases. The first case was a flat plate cascade with
zero thickness, at zero angle of attack, with space-to-
chord ratio of unity, and a stagger angleof 45°. This
test case was used to study the problems associated
with the stagger angle (non-orthogonal grid), and the
periodicity boundary condition. The second test case
was a NACA 65-010 cascade with zero inlet and exit
flow angles, zero stagger, and space-to-chord ratio of
unity. This test case was used to study the problems
associated with the large extent of the inviscid
region, the leading edge stagnation point, and the
rapid changes in the boundary shape near the leading
edge.

Finally, the method was tested for cascades used
in practice. The predicted exit flow angle, drag
coefficient, boundary layer profiles, and boundary
layer momentum thicknesses were compared with the
available experimental data, and the agreement between
them was found to be good.

A modified version of the space-marching code
developed by Govindan [7] was used in the computations.

THE GOVERNING EQUATIONS AND THE SPACE-MARCHING METHOD

Details of the technique are given by Govindan
[7], and, therefore, only a brief description of the
method will be given below. Some modifications to
the space-marching code are also described in this
section.

The non-dimensionalized steady two-dimensional
compressible Navier-Stokes equations can be written
in conservation-law form as

OE(q) , 3F(q) _ 1 [31(q) |, BP(q)} w0

9x dy R | 3x dy



where

T
q = lp, pu, pv, pe,] (2)

The vectors E, F, T, P are given the Appendix.
Following Govindan [7], the fluxing internal energy
(pej) was used instead of the more commonly used total
energy e. The use of pe; instead of e as an indepen-
dent variable was found to improve the solution for low
Mach number flows.

To facilitate the application of the boundary
conditions, a body-fitted coordinate system was used.
The body-fitted grid in the physical domain was trans—
formed to a rectangular grid in the computational
domain by the transformation

g = E(x,y)

(3)

n = n(x,y)

where £ is the coordinate in the near-streamwise
direction, and n is the coordinate in the transverse
direction.

Equation (1) was transformed to the body-fitted
coordinate system (£,n). The resulting equation can
be kept in the same form as Eq. (1),

E (q) " BF(q) ol [a@(q) N a@(q)l
n

9& 9 Re & an “
where

~ & g€ ~ nNnE nF

= Xp 4L Y =X . ¥y
E JE+-TF, F 7 =y
. E E,' ~ n n

e A - X '
T 3 T 7 Py P 5 T + P,

and J is the Jacobian of the coordinate transformation
given by

J=¢En -¢&n_. (5)

¥ ¥ x

For flows with a dominant flow direction, the
Navier-Stokes equations can be parabolized by neglect-
ing the streamwise diffusion terms, and by treating the
streamwise pressure gradient in the momentum equation
as a source term [7]. Therefore, the Navier-Stokes
equations were parabolized by dropping the term
3T/3E in Eq. (4), and by writing the term OE/JE as

~ 3E (q) =

JE _ s

9 = 3t Ep(Ps) (6)

where
- 1 T
E,(@) = Jlpu, put, ovU, (e + p)U]
pn+l pn

i _ 1% 7 Pg T
EP(PS) =3 A [o, gx, Ey, 0]

Pg is the assumed pressure; n is the index in the
E-direction; n-station is the station at which the
solution is being sought.

The parabolized Navier-Stokes equations were

written as

9% (@) =« BA(g) _ 1 BA(g)
—§%—4~ + Ep(ps) ¥ on Re 9N 2

Equation (7) is a well-posed initial valug problem
that governs the evolution of the flux vector Eg.
Starting from an initial n-line, the solution is
marched downstream along the £ direcEion which is the
"time-1like" coordinate. The vector & (pg) has to be
5iven as an input. In the present investigation,
Ep(Ps) was estimated from the pressure distribution
calculated from an inviscid code.

Modification to the Space-Marching Method for Strong
Streamwise Pressure Gradients

~ In internal flow calculations, the decomposition
of E according to Eq. (6) works well only for mild
streamwise pressure gradients. In the presence of
strong streamwise pressure gradients, part of the
streamwise pressure gradient in the momentum equations
must be retained in ﬁs.

~

Following an approach similar to Rakich (81, Eg
and Ep were modified as follows:
~ 1 . ) T
Es = E[pu, oul + EXmP, ovU + jymP, (e+P) U] (8)
pn+l pn
S (1-w) Ps - T
Ep = AE [o, B gy, 0] (9)

where w is given as in Ref. 9

o=+ (v - DM,

Adding and substracting (l—m)pn—l/(Af J) in
Eq. (9) and transferring (1-w) (p™ - pu=1) /(A7 J) into
Eg, the following expressions were obtained:

o 1
Es(q) = 3[pu, pul + gx(zw-l)P, ovU + Ey(Zw—])P,

(e+P)U]] (10)
n+1 _ n-1
(1-w) Ps P T
J AE x* y

Ep(ps)

The above form of Eg and Ep enabled the algorithm
to march through regions of strong streamwise pressure
gradient (e.g., leading edge region) .

The Numerical Technique

Following Beam and Warming [10], Eq. (7) is
finite differenced as follows:
BE . B oaE g 0l
C_EJ O S §_{§§3n] AqP = ¥_32¥_ éEE A n-1
3q | 1+b, 9n'aq 4 1+b, [3q 4
b, AE
17 . n n-1 _AE 3B .
+Aij;7;;(N NT) + 11% [an + N] (11)
2
where



The parameters by and b) determine the scheme
employed. The results in this paper were obtained with
by = 1, by = 1/2 corresponding to a 3-point-backward
implicit scheme with truncation error 0(AE3) .

In order to prevent the uncoupling of the odd and
even points, a second order artificial dissipation term
was added in Eq. (11) on both the explicit and the
implicit side. This term has the form

2 T
o -1y 2% o dMew o dlew Pl
Jp 1 22 72 2 * 3 2 74 2
n an an an

where 07, 0y, 03, and 04 are the damping coefficients.
The coefficients 0y and 03 were carefully chosen so that
the damping terms S and S3 were much smaller than the
second order viscous terms.

Global Mass Flow, and Pressure and Velocity Corrections

In calculating a flow field with a space-marching
method, an initial velocity profile must be specified at
the initial station. This specification determines the
global mass flow in an internal flow computation.
Furthermore, the streamwise pressure gradient is
approximated from the assumed pressure field. However,
in an internal flow computation, the specification of
the global mass flow, and the streamwise pressure
gradient is mutually exclusive. 1In an internal flow
computation where the global mass flow is specified,
and the streamwise pressure gradient approximated,
requirements of uniqueness of the solution and the
linearization errors in the numerical scheme lead to a
slow loss of the global mass flow constraint [7].
Maintenance of this constraint is important in internal
flow computations, and, therefore, the streamwise
pressure gradient must be adjusted to prevent loss of
the constraint. 1In the present algorithm, this is
done as follows:

(a) After the solution is found at a particular
streamwise station, n, the change in the total
mass flow is calculated, and the corrections to
the streamwise pressure gradients and the velocity
are derived from the following approximate

formulae

AP N

sc _ _ Am o = - X __sc

AE EZ + {2 : c pU  AE

=¥
o 9n
£ AP
_ _ _y __sc
v, oU AT (13)

(b) The pressure correction is used to correct the
streamwise pressure gradient which is going to be
used in the solution of the next streamwise
station n+l.

(c) The velocity corrections are used to correct the
velocity at the current streamwise station n.

The corrections to the pressure gradient and the
velocity were found to be small at each streamwise
station.

THE GRID SYSTEM

For the numerical solution of the flow field in
cascades, the most convenient body-fitted grid is the
H-type grid (see Fig. 1). The periodicity boundary

Fig. 1. H-type Periodic Grid and Notation Used

condition upstream and downstream of the cascade requires
that the two extremes of the 1 lines be periodic points.
This implies that the £ and 1 lines intersect approxi-
mately at an angle equal to the stagger angle. The
non-orthogonality of £ and n lines should not present
any problems since the transformation expressed by

Eq. (3) is general, and no assumption of orthogonality
was made. However, only a simplified form of the
Navier-Stokes equations is being solved, and the
approximations made are not necessarily independent of
the coordinate system. In order to see this dependence,
consider the flow over a flat plate with the x and §
coordinates along the flat plate, the y coordinate
normal to x and n forming an angle ¢ with £ (see Fig.

2) . For this geometry, the coordinate transformation

is given by

e
I

x - cotody

(14)
n=y
Y
7l
o /
ok )
a 527
7+ 7
6 64 §=x-cotp ¥
w 5+ 5// -
= 3" 4 n=Y
I
2t 2/ A
I-
A
012345678 x&

Non-orthogonal £-n Coordinate System for the
Flow Over a Flat Plate



Consider the diffusion term in the x-momentum
equation for incompressible flow

2 1
=}1{{3‘2‘+—3;‘J. (15)
X e
i lox” 9y

The xy index indicates that the diffusion D is consid-
ered in the x,y coordinate system.

Transforming Eq. (15) to (£,n) coordinates, and
assuming that all metrics are constant throughout the
domain of interest, the following expression is

obtained:
2
1 { 2, } 5% 2} 3%
= &y + 2,
DEﬂ Re 1 x y) 2 + U nyJ an2
) Jdu
+2En, FnE) g {SHJ : (16)

After neglecting the streamwise diffusion terms, D

En
becomes

2

* 1 2 2, 9 u

D, =— (M +n)— . 17
2

En Re X y n

When D is transformed back to (x,y) coordinates,

Dyy will be thalned as given by Eq. (15). However,
transforming D; back to (x,y) coordinates, the
following expression is obtained:

2
# 1 2:2 2.2 8
D =—a [T + 18] ‘21+<n£+<:n>—7
Y ReJ YV Y ax 3y
2 2 32u
-2
2 + nDEE Hoa] (18)

For the particular example of the flat plate (Fig. 2),
Eq. (18) becomes

* 1 2
ny =3 [(cotd)

T 8
sz dy

(19)

2 8 By

Equation (19) indicates that, depending on the angle ¢,
part of the streamwise diffusion is retained in D
and Dg Only when ¢ = 90° (i.e. when £,n is an
orthogonal coordinate system),
terms in ny and Dgn are zero.

A similar analysis of the streamwise pressure
gradient term [11] showed that the assumption
made concerning this term is strictly valid only for
an orthogonal (£,n) grid system. Therefore, the basic
assumptions used to parabolize the Navier-Stokes

equations do not hold for a non-orthogonal grid system.

Numerical experiments on the laminar flow on a
flat plate (Fig. 2) indicated that the solution
depended on the angle ¢, and that the correct solution
(Blasius solution) was obtained only with ¢ = 90°.

In a recent publication, Degani and Steger [12]
compared the results of the thin Navier-Stokes
equations with those of the full Navier-Stokes

the streamwise diffusion

equations for the flow over a ramp. They indicated in
their paper that the agreement between the two remained
good only when the £ and n lines intersected at an
angle greater than 70°.

As has been shown, it is important to keep the
£ and n lines as close to being orthogonal as possible.
For the flow through staggered cascades, this requires
the use of a non-periodic grid. 1In the present investi-
gation, a non-periodic grid is generated algebraically
as follows (see Fig. 3):

Fig. 3. H-type Non-periodic Grid

1. The x-coordinate is aligned with the chordline.

2. The lower boundary is formed by a straight line AB
forming an angle 01 with the x-axis, the suction
side of the airfoil BC, and a second straight line
CD forming an angle 0P with the x-axis.

3. The upper boundary is formed by a straight line
EF parallel to AB, the pressure side of the airfoil
FG, and a second straight line GH parallel to CD.

4. The n-lines are straight lines. They are drawn
normal to the lower surface along AB and CD. Along
BC, the n lines are drawn normal to the suction
surface wherever the slope of the surface tana
satisfied the condition

tanOL2 < tano fﬁtandl.
If tano > tano the n-lines are drawn parallel
to the normal on AB, and if tana < tana the
n-lines are drawn paral]e] to the norma% on CD.

5. The angle 0] need not be related to the flow
direction; a1 is that angle that permits most
n-lines to be normal to the £-lines. The angle
02 is more difficult to find; it has to follow the
direction of the exit flow. A detailed discussion
on 02 follows in the boundary condition section.

6. The spacing in the 1 direction is found. Grid
points are clustered near the two extremes of the
n-lines through an exponential function. When the
spacing in the n direction is found, the &-lines
are drawn.

The grid system generated by the above method is
nearly orthogonal in the whole domain except in the

immediate vicinity of the leading edge.

INITTAL AND BOUNDARY CONDITIONS

Initial Conditions

The required inviscid pressure distribution for
calculating E (ps) is obtained from a modified version
of Douglas- Neumann cascade program [13]. The space-
marching solution starts from the initial line AE as
shown in Fig. 4. All the required quantities (p,u,v,p)
are obtained from the inviscid solution. The present
method does not capture the elliptic effects. These
are all included in the initial pressure distribution



Fig. 4 Boundary Conditions for the Non-Periodic
Grid
prescribed. Therefore, the calculation need not start

from far upstream of the leading edge. The solution can
start from anywhere upstream of the leading edge or even
just at the leading edge.

Boundary Conditions Upstream of the Leading Edge

The most appropriate boundary condition upstream
of the leading edge is the periodicity condition. How-
ever, the grid system employed does not allow for the
application of the precise periodic boundary condition.
In the region of the boundary lines AB and EF, the
viscous effects are negligible, and, therefore, the
known inviscid values of velocity, pressure, and density
are used on these lines as boundary conditions. The
periodicity condition is thus satisfied since the
inviscid solution is periodic.

Boundary Conditions on the Blade Surfaces

Tn a viscous calculation, no-slip boundary condition
must be used on solid surfaces. However; in the present
investigation the tangency inviscid condition was used
near the leading edge (BB' and FF' in Fig. 4). The
flow in the interior points does not follow the rapid
change of the boundary shape, if the no-slip condition
is applied in this region. The extent of BB' and FF'
is approximately 5 percent of the chord. Downstream of
B' and F', the no-slip boundary condition is used for
laminar flow, and a slip condition for turbulent flow.
The latter is discussed in the turbulence model section.
The use of an inviscid boundary condition during the
initial 5 percent of the chord does not affect the
final solution since the boundary layer thickness in
this region is smaller than the distance between the
wall and the first grid point away from the wall.

Boundary Conditions Downstream of the Trailing Edge

The most appropriate boundary condition downstream
of the trailing edge is the periodicity condition.
However, as upstream of the leading edge, the grid
system employed does not allow for the application of
the precise periodic boundary condition. The problem
downstream is more severe than upstream of the cascade,
since the inviscid solution cannot be used because of
the presence of the wake in this region. Instead, the
lines CD and GH are chosen to be along the exit flow
direction, estimated from experimental data, or from
the inviscid solution, or from correlations. The
normal derivative of the streamwise velocity, density,
and pressure is zero along DC and GH

3 _3% _2_,

dr or ar
TURBULENCE CLOSURE MODEL
In order to model the effects of turbulence,

Prandtl's mixing-length hypothesis is used for the
boundary layer and the wake.

For the boundary layer, the eddy viscosity is
calculated from the formula,

2 Kr for r/§ < 0.219

with

2 = 0.098 for r/S8 >0.219

(20)

where Q the streamwise velocity, r the normal distance
from the wall, and K the von Karman constant (e = 0.41).
For the wake, up is calculated from the formula [14]

UT = QCLQSRe with c = 0.094 (21)

where Q. is the velocity defect at the center of the
wake, and L the wake semi-width; L is defined as the
distance between the center of the wake and the point
where the velocity defect is equal to QS/Z.

The calculation of the eddy viscosity is lagged
one streamwise step. The mean flow equations are first
solved at station n using the eddy viscosity derived
at the previous station n-1. The derived mean flow
quantities at station n are then used to calculate the
eddy viscosity to be used at station n+l.

In order to avoid the use of a large number of
grid points near the wall, a wall function is used to
estimate a slip velocity. Following Kreskowsky et al.
[15], the wall slip velocity is derived by assuming
that the velocity profile is logarithmic at the first
grid point away from the wall. Therefore, the velocity
gradient at the first grid point away from the wall is
given by

9Q u
p *
3r T okr (22)
P

The index p indicates quantities at the first grid
point away from the wall. Using a backward finite
difference, the wall slip velocity is estimated from
Eq. (22) as

*

Qrre = % " % (23)

The friction velocity ux is found from the law of
the wall written at the first grid point away from the
wall;

u,r

1
& n(9 t_P Re) - (24)

P

The first grid point away from the wall is chosen such
that it is outside the laminar sublayer, and in the
law of the wall region.

RESULTS AND DISCUSSION

Flat Plate Cascade at 45° Stagger

The method was first tested for the laminar flow
(Re = 104) through a flat plate cascade with zero thick-
ness, at zero angle of attack, space-to-chord ratio of
unity, and a stagger angle of 45°. For such a cascade,
the inviscid flow solution gives a uniform pressure
everywhere, and thus, if the boundary layer approxima-
tion is employed, the viscous solution is given by the
Blasius solution.



When the periodic grid (£ and n lines intersecting Y
at 45°) was used in the solution, the growth of the
boundary layer on the lower surface was very different
from the growth on the upper surface, and both were li———Mme Solution J
very different from the Blasius solution. This resulted Space Marching Solution
from the non-orthogonality of the grid. The growth of
the boundary layer was very different on the two sur-

faces, because the term 2cot¢32u/9x8y in Eq. (21) had 10 = N Ny 1\ﬂ r\\\\\\
a different sign on each surface (¢ = 45° on the lower “\\\\\\\ \\
surface, and ¢ = 135° on the upper surface).
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The axial velocity profiles obtained with the non-
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Cascade at 45° Stagger

length, and 49 grid points in the n direction were used

in the computation. Fig. 5 shows that the present
solution captures the acceleration of the core flow
resulting from the development of the boundary layers
on the two surfaces. Considering that there are only
2 to 12 grid points in the boundary layer, the results
of the space-marching method are reasonably close to
Blasius solution if the acceleration of the core flow
is neglected.

Symmetric Cascade

The method was next tested for the laminar flow
(Re = 104) through a cascade composed of NACA 65-010
airfoils, with zero inlet and exit flow angles, zero
stagger, and space-to-chord ratio of unity. One
hundred steps per chord-length, and 49 grid points in
the n direction were used in the computation. Fig. 6
shows the predicted axial velocity profiles as well
as those obtained from Douglas-Neumann inviscid code
[13]. The space-marching method responds well to the
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Cascade

et al. [16], was computed with the present method at

strong streamwise pressure gradients present near the two different angles of attack (a = 4°, 8°). The
leading edge, and it captures the acceleration of the parameters of the two cases were as follows:
core flow resulting from the development of the boundary
layers on the two surfaces. Angle of Attack 4° 8°
Inlet Flow Angle 30° 30°
Figure 7 shows the calculated velocity vectors. Space-to-Cherd Ratio 1 1

The flow follows the boundary shape everywhere,
including the leading edge region.

Herrig et al.'s Cascade [16]

Two hundred steps per chord-length,
in the n direction were used in the

and 49 grid points
calculation.

The predicted momentum thicknesses on both
The turbulent flow through a cascade composed of surfaces at the two angles of attack are shown in Fig. &.

NACA 65-010 airfoils, experimentally tested by Herrig
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Using the predicted momentum thicknesses at the trailing

edge, the loss coefficient § was calculated from
Speidel's [17] formula
AP 2(6 il T I
o o _ ss ps TE (9) (25)
) 1 2 3 -2 s’ 7
5 PQ) cos BZCOS 81
Then, the drag coefficient was calculated from the

relationship

D - (s
NTT ZC = C(C) cosBm
2 P

(26)

where Rm = (tanB1 -+ tanBz)/2.

The predicted Cp as well as the predicted turning
angle are compared with the measured ones in Table 1.
The agreement between predicted and measured values is
good. The differences in the values of C. cannot be
considered high since Cp is a small, and difficult to
measure quantity.

Table 1. Predicted and Measured Cp and 85-87 for a
NACA 65-010 Cascade
a Ch Cp BZ - Bl BZ - Bl
Measured Predicted Measured Predicted
4° 00125 l 0.0152 32 2.5°
8° 0.0125 0.0150 7° 6.6
- |

Peterson's Cascade [18]

Peterson measured the boundary layer developing
on a cascade composed of NACA 65-410 airfoils. The
parameters of the cascade were as follows: 10
A = 45°, s/c = 0.85.

a =

Two hundred steps per chord-length and 49 grid
points in the n direction were used in the calculation.
The solution was started at 5 percent of the chord-
length downstream of the leading edge on the lower sur-
face (see insert in Fig. 9).

The predicted streamwise velocity profiles as
well as those obtained from the Douglas-Neumann inviscid
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Fig. 9. Streamwise Velocity Profiles in Peterson's

Cascade [18]

code are shown in Fig. 9. This figure shows that the
viscous effects alter the inviscid velocity distribu-
tion. This is prominent at the trailing edge region.

The predicted boundary layer profiles on the
suction and the pressure sides are compared with those
measured in Figs. 10 and 11, respectively. The agree-
ment between the two is good on the suction side.
However, on the pressure side, the agreement is good
only at z/C = 0.9. The data at the last three loca-
tions on the pressure side (z/C = 0.8, 0.9, 0.98) does
not seem correct since the velocity defect near the
wall decreases with z/C increasing.

The predicted and measured momentum thicknesses
are compared in Fig. 12. The agreement is good up to
80 percent of the chord.
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of Peterson's Cascade
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One possible reason for the discrepancies between
the predicted and the measured values is the inaccurate
initial inviscid pressure distribution. Fig.13 shows
the measured blade pressure distribution as well as
that predicted from the Douglas-Neumann program. The
pressure gradients are comparable only on the suction
side up to 80 percent of the chord. The results of
the space-marching code can be improved, if a more
accurate initial pressure distribution is available.

CONCLUDING REMARKS

The present investigation has demonstrated that
the space-marching method can predict the viscous flow
in turbomachinery cascades. By keeping part of the
streamwise pressure gradient implicitly in the calcula-
tion, the method was able to go through regions of
strong streamwise pressure gradients, such as the lead-
ing edge region. The necessity of keeping the grid
nearly orthogonal has been demonstrated. A nearly
orthogonal, non-periodic grid system for cascades has
been proposed along with the boundary conditions that
must be used. Second order artificial damping terms
were used to avoid the uncoupling of the odd and even
points in the inviscid region of the flow field.

The method is economical; the solution for
Peterson's cascade on a 306 x 49 grid was obtained in
about 50 sec on an IBM 3081. The accuracy of the

_ PS[sS
‘° Experimental Data [ o o
0.501 Douglas-Neumnann 0TS
\o /6—0
\ -
\ o e i
\ -
025— \\\\ o - -—__”// 8 o «
=9 oo o
Cp o o

-0.25

-0.50

1 ! 1

1 1 1
00 01 02 03 04 05 06 0r 08 09 10

1 1 Il

Z/C
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Fig. 13.

method is good, but it can be improved by using a more
accurate initial pressure distribution.

Even though the test cases presented in this
paper were all for incompressible flows, the method
and the code can be used also for the prediction of
compressible flows.
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APPENDIX

The vectors E, F, T, P in Eq. (1) are given by
the following expressions:

[ ou ov
pu + p puv
E = F = 3
puv pv + p
(e + p)u (e + p)v.

10

du 2 Jdu v
M5y — 3 UG 5;)

H(g; s

du v
“(ay + )

ov

2 5; v

2 Ju
-3 HGt By
Ky %4

Pr dy 5

2

where Y. and |y, compose the viscous dissipation terms
in the energy equation and are given by

du 2 Ju v Ju v

h o= L2l oM,y OV Oy 1y OV,
Y1 opg ox 3 ““(ax + By) * UV(By * BX)
_ v 2 Ju ov v Jdu

Vo = 2w gy - WG g F G+ )

The equaticn of state for a perfect gas closes the

above system of equations and can be written as follows:
p = (y-1)pe,

with e l(UZ 4 2)
i p 2 v
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ABSTRACT

A large body of experimental data from supersonic
compressors is reviewed and common operational charac—
teristics identified. Overall flow characteristics
and suction surface leading edge behavior show that
the "Rule of Forbidden Signals" is a relevant funda-
mental principle. The "Rule of Forbidden Signals" 1is
usually circumvented over much of the airfoil pres-—
sure surfaces; the circumstances often suggest a
reduced "apparent Mach number". Circumstances sur-
rounding appearance and disappearance of secondary
shocks also suggest the idea of the reduced "apparent
Mach number". Two-dimensional Method of Characteris-
tics analyses are useful tools for understanding the
observations, provided appropriate allowance for a
third dimension influence on streamtube cross section
area is made. If radial equilibrium against the cen-
trifugal forces of absolute swirl is implemented in a
reliable and recognizable manner, a means for justi-
fying the apparent streamtube areas seems attainable.

Introduction

Reference 1 presented a status report on experi-
mental observations on shock structures in transonic

compressors, including quotations of the frustrations
encountered by investigators into the subject. The
subject continues to generate much interest, with many
papers presented at sessions of the technical society
meetings devoted to cascade and turbomachinery aerody-
namics. New experimental data have been presented in
References 2-7. New results on analytical modeling of
the flow in compressor rotors have been presented in
References 5-10.

Reference 1 summarized the results of its investi-
gations in a tabulation of observations, which could
serve as a checklist of phenomena to be used to evalu-
ate new experience. More recent experience has sug-
gested revisions of the tabulation. The new tabula-
tion, Table I, serves as a framework for evaluating
the data discussed in this paper.

There are three principal objectives of this
paper.

The first of these objectives is to examine the
upstream propagation of pressure disturbances in
transonic compressors for consistency with the "Rule
of Forbidden Signals". In elementary supersonic flow
analysis pressure signals cannot, of course, propa-

Table I. Transonic Compressor Flow Pattern Observations.

l. Upstream flow is isolated from a downstream throt-

tle; throttling is uniform over the annulus.

2. Shock waves appear upstream of compressor rotors
and compressor cascades.

3. Attached shock wave angles within rotor cascade
passages approximate maximum deflection.

4. Shock discontinuities are substantially below
expectation.

5. Passage and downstream shocks disappear at super-
sonic pressure levels.

6. Leading edge shocks are mostly absorbed at inci-
dence on suction surface.

7. Flow induction suction surfaces respect "Forbid-
den Signals".

8. '"Forbidden Signals" are circumvented on pressure
surfaces (except possibly for 20% chord near lead-
ing edge).

9. Passage exit pressure and velocity levels imply
substantially reduced flow area.



