Intelligent Interfaces

Theory, Research and Design

Edited by P.A. HANCOCK & M.H. CHIGNELL

Intelligent Interfaces

Theory, Research and Design

Edited by

P. A. HANCOCK

Department of Safety Science University of Southern California Los Angeles, CA, USA

and

M. H. CHIGNELL

Department of Industrial Engineering University of Southern California Los Angeles, CA, USA

© ELSEVIER SCIENCE PUBLISHERS B.V., 1989

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Science Publishers B.V. (Physical Sciences and Engineering Division), P.O. Box 1991, 1000 BZ Amsterdam, The Netherlands.

Special regulations for readers in the USA. – This publication has been registered with the Copyright Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about conditions under which photocopies of parts of this publication may be made in the USA. All other copyright questions, including photocopying outside of the USA, should be referred to the copyright owner, Elsevier Science Publishers B.V., unless otherwise specified.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material berein.

ISBN: 0 444 87313 9

Publishers:
ELSEVIER SCIENCE PUBLISHERS B.V.
PO. Box 1991
1000 BZ. Amsterdam
The Netherlands

Sole distributors for the U.S.A. and Canada: ELSEVIER SCIENCE PUBLISHING COMPANY, INC. 655 Avenue of the Americas New York, N.Y. 10010 U.S.A.

Series Editors:

Hans-Jörg Bullinger

Peter G. Polson

FbG-IAO Stuttgart

FRG

Institute of Cognitive Science

University of Colorado Boulder, Colorado, USA

Assistant Series Editors:

Klaus-Peter Fähnrich Jürgen Ziegler

FbG-IAO, Stuttgart, FRG

NORTH-HOLLAND AMSTERDAM · NEW YORK · OXFORD · TOKYO

PREFACE

The interface is the focal nexus of human-computer interaction. However, only a small number of books have as yet been written on how to design high quality human-computer interfaces. Most existing texts generally rely on guidelines and experimental results that come either from research in cognitive psychology or from practical experience with interface development. However, computing technology continues to advance and many of the existing interface design guidelines stem from experience with earlier generations of computing technology. From the perspective provided by a number of different researchers, this book is intended to provide an introduction to a new form of interface design that is based upon present and future technology, rather than yesterday's.

The interface is typically conceived of as a physical structure composed mainly of screen and keyboard. However, present day interests extend beyond these traditional aspects to the broad and more problematic cognitive characteristics of interface activity. The present work concerns the nature, composition, and implementation of the cognitive interaction between the human and the computer, through the development of intelligent interfaces. The definition of what intelligent interfaces are, and how they may be built, is still in the earliest stages of creation. However, intelligent interfaces may be characterized presently as the types of interface which include tools that minimize the cognitive distance between the user's model of the task and the appearance of the task that is implied by the input and output characteristics of the computer software.

Current research on intelligent interfaces represents the latest step in the evolution of interface technology which mirrors, but generally lags behind, hardware and software technology. At the leading edge of user interfaces, the focus has shifted from purely physical concerns to cognitive conceptions which include the first efforts to incorporate mediating intelligence into the communication between operator and system. This progression has resulted in contemporary interfaces which represent a compilation of still emerging and on occasion conflicting evolutionary pathways. One goal of intelligent interfaces is to reconcile

vi Preface

these differences, when they arise, by providing interpretive translation and a common communications medium in the event of conflicting demands.

The chapters in this book address the topic of intelligent interfaces from a variety of theoretical, empirical, and design perspectives. The contributions to this text represent a foundation for subsequent intelligent interface development which will eventually lead to efficient interfaces that are both physically and cognitively compatible. The chapters are designed to be read in the order in which they are presented, but each chapter also provides a self-contained overview of the specific topic that it addresses.

Each chapter is written by authors who are currently carrying out research in interface design and related issues. The first two chapters (by Chignell, Hancock, and Loewenthal, and by Card) introduce the topic and provide a preliminary definition of intelligent interfaces. The chapter by Kantowitz then discusses the relationship between human and machine intelligence and illustrates the process of adding intelligence to software. These first three chapters set the theoretical context for the book. The next four chapters summarize important research findings that relate to intelligent interface design. The chapter by Eberts and Eberts places the intelligent interface concept within the broader context of human-computer interaction, while the chapter by Polson, Wickens, Klapp, and Colle reviews recent findings in cognitive psychology that have application to intelligent interface development. The chapter by Jacob reports basic research on the concept of direct manipulation that is a desirable feature for interfaces in general and intelligent interfaces in particular. Elkerton and Williges focus on issues of dialog design and show how dialogs within intelligent interfaces can be viewed as an evolution from earlier dialog design approaches.

The final three chapters discuss intelligent interface applications. Trollip and Lippert suggest knowledge engineering as a useful instructional process, and their work illustrates the type of application domain that would benefit from the introduction of intelligent interfaces. Myers, Scerbo, Limanowski and Fisk discuss recent approaches to on-line documentation, another area where intelligent

Preface

interfaces are needed. The final chapter by Higgins, Chignell, and Hancock calls for knowledge-based supervisory control in aerospace systems, which represents an evolving technology in which intelligent interfaces may add significantly to the safety and efficiency of flight operations.

This book should be of use to researchers, designers, and software engineers who are interested in the development and evaluation of new technologies for human-machine interface design. It is important for human factors engineers who are responsible for improving human-computer interaction and software developers to whom intelligent interface development presents a challenge and a necessity within an increasingly competitive environment. For the student, the present text provides a first and hopefully enticing glimpse of one emerging facet of human-computer interaction. It is our hope in this text to open new and exciting avenues through which to conceive of operator-machine communication.

We would like to thank our wives (Frances and Sandra) for supporting us in the editing this book, and we would also like to thank Kees Michielsen at North Holland for his assistance and encouragement in completing the project. There are a number of other people who have figured prominently in the production of this book. These include Nancy Knabe who assisted in the preparation of the camera-ready copy, and Bob Froelig, who acted as an invaluable and helpful technical consultant on matters concerning the computer generation of the text output. We would like to acknowledge the support of the IEEE Systems, Man, and Cybernetics Society who sponsored the original session on intelligent interfaces at their annual meeting in 1986 that led to a number of the chapters in this book. Lastly, we could not have produced this work without the support provided by NASA, the National Aeronautical and Space Administration. The grant monitor, Hart, facilitated the production of the text through administration of Grant NCC 2-379, which enabled the completion of the processing of the work. Their continuing support is much appreciated.

TABLE OF CONTENTS

1. AN INTRODUCTION TO INTELLIGENT INTERFACES	1
M.H. Chignell, P.A. Hancock and A. Loewenthal	
1.1. INTRODUCTION	1
1.2. ADVANCES IN INTERFACE TECHNOLOGY	3
1.2.1. Functions of the Interface	3
1.3. WHEN IS AN INTELLIGENT INTERFACE NEEDED?	6
1.4. MODELS OF THE INTELLIGENT INTERFACE	7
1.4.1. The Intelligent Interface As An Intermediary	9
1.4.2. The Intelligent Interface As A Machine Reasoning System	10
1.4.3. Intelligent Interfaces and Direct Manipulation	11
1.4.4. Dialog Design	12
1.5. THE COMPONENTS OF AN INTELLIGENT	13
INTERFACE	
1.5.1. A Task Model	13
1.5.2. A User Model	14
1.5.3. A Translator	16
1.6. EXISTING INTELLIGENT INTERFACES	17
1.6.1. Information Retrieval Search Intermediaries	17
1.6.2. Expert Systems as Intelligent Interfaces	19
1.7. SUMMARY	20
2. HUMAN FACTORS AND ARTIFICIAL INTELLIGENCES.K. Card	27
2.1. INTRODUCTION	27
2.2. THE CHANGED NATURE OF THE MACHINE	28
2.2.1. Increased Functionality	28
2.2.2. More Cognitive Tasks	30
2.2.3. More Complex Applications	31
2.2.4. More Interactive Interfaces	31
2.3. INTELLIGENT INTERFACES	32
2.3.1. MYCIN: Example of an Intelligent Task Machine	35
2.3.2. WEST: Example of an Intelligent User Discourse Machine	37
2.4. PROBLEMS OF THE INTELLIGENT INTERFACE	42

X

2.4.1. The Role Problem	42
2.4.2. The Automation Problem	43
2.4.3. The Communication Problem	44
2.5. HUMAN FACTORS AND ARTIFICIAL	46
INTELLIGENCE	
3. INTERFACING HUMAN AND MACHINE INTELLIGENCE	49
B.H. Kantowitz	
3.1. INTRODUCTION	49
3.2. WHAT IS INTELLIGENCE?	50
3.2.1. Human Intelligence	50
3.2.2. Machine Intelligence	50
3.3. TOWARDS AN OPTIMAL INTERFACE	53
3.3.1. An Unintelligent Example	56
3.4. INTERFACES	58
3.4.1. User Acceptance	58
3.4.2. The LAD Display	60
3.4.3. TEIERESIAS	62
3.4.4. Natural Language Interfaces	63
3.5. PROSPECTS AND NEEDS	65
4. FOUR APPROACHES TO HUMAN COMPUTER	69
INTERACTION R.E. Eberts and C.G. Eberts	
4.1. INTRODUCTION	69
4.2. THE EMPIRICAL APPROACH	70
4.2.1. Information Display	72
4.2.2. Input Devices	73
4.2.3. Advantages	76
4.2.4. Disadvantages	77
4.3. THE PREDICTIVE MODELING APPROACH	79
4.3.1. The GOMS Model	79
4.3.2. State Transition Networks	84
4.3.3. Advantages and Disadvantages	85
4.4. THE ANTHROPOMORPHIC APPROACH	86
4.4.1. Human-Human Interaction as a Source of Data	89
4.4.2. Anthropomorphic Methods to Make Interaction	91
More Natural	
4.4.3. Natural Language Processing	91
4.4.4. Voice Recognition	95

	•
Table of Contents	X1
Tuble of Contents	161

4.4.5. Assistance With a Task	95
4.4.6. Adaptable Systems	96
4.4.7. User Models	97
4.4.8. Advantages	99
4.4.9. Disadvantages	100
4.5. THE COGNITIVE APPROACH	101
4.5.1. Problem-Solving	103
4.5.2. Analogical Reasoning	105
4.5.3. Spatial Reasoning	107
4.5.4. Scripts, Plans, and Goals	109
4.5.5. Mental Models	111
4.5.6. Attentional Resources	112
4.5.7. Advantages and Disadvantages	114
4.6. INTELLIGENT INTERFACES AND THE FOUR	115
APPROACHES	
5. HUMAN INTERACTIVE INFORMATIONAL PROCESSES	129
. M.C. Polson, C.D. Wickens, S.T. Klapp and H.A. Colle	145
5.1. INTRODUCTION	129
5.2. INTERFERENCE	133
5.2.1. Resource Limitations as a Source of Task	133
Interference	100
5.2.2. Single Capacity Models	133
5.2.3. Multiple Pool Models of Task Interference	136
5.2.4. Resource Composition	136
5.2.5. Complementarity of Supplies	136
5.2.6. Defining a Necessary and Sufficient Set of	138
Resource Pools	
5.2.7. Wickens' Three Dimensional Approach	139
5.2.8. Dual Processor Approach	141
5.2.9. Hierarchically Structured Resource Pools	142
5.2.10. Refining and Testing Among Alternative	143
Proposals	
5.2.11. Interference From Other Sources	143
5.2.12. Interference Related to the Microstructure of	144
Processing Operations	
5.2.13. Crosstalk	144
5.2.14. Interlist Intrusion Errors	144

xii Table of Contents

	5.2.14.1. Attention Switching	145
	5.2.14.2. Modality Switching	145
	5.2.14.3. Task Switching or "Multiplexing"	146
	5.2.14.4. Consciousness	146
	5.2.14.5. Issues	147
	5.2.15. Interference Related to Strategies	147
	5.2.16. Ways Strategy Can Affect Task Interference	148
	5.3. FACILITATION	149
	5.3.1. Perceptual/Display Similarity	150
	5.3.2. Information Similarity	150
	5.3.3. Central Processing Similarity	151
	5.3.4. Similarity of the Response	151
	5.4. INTEGRATION	152
	5.4.1. Integration and Type of Input	152
	5.4.2. Identifying Integrated Tasks	154
	5.5. TRAINING	154
	5.5.1. Changing Resource Composition	155
	5.5.2. Is There a Generic Timesharing Skill?	156
	5.5.3. Integration and Component Task Training	157
	5.5.4. Integration and Automaticity	158
	5.6. CONCLUSION	158
6.	DIRECT MANIPULATION IN THE INTELLIGENT	165
	INTERFACE R.J.K. Jacob	
	6.1. INTRODUCTION	165
	6.2. WHAT IS A DIRECT MANIPULATION USER	165
	INTERFACE?	
	6.3. EXAMPLES OF DIRECT MANIPULATION	168
	INTERFACES	
	6.3.1. Interfaces for Concrete Objects	169
	6.3.2. Interfaces for Abstract Domains	170
	6.3.3. A Direct Manipulation Military Message System	173
	6.3.4. A Direct Manipulation System for Designing User	182
	Interfaces	
	6.3.5. Unix and Direct Manipulation	184
	6.4. CHARACTERISTICS OF DIRECT MANIPULATION	186
	INTERFACES	
	6.4.1. Memory Load	186

	• • • •
Table of Contents	X111
Tuble of Contents	71111

6.4.2. Visual Representation	187
6.4.3. Fixed Level of Abstraction	187
6.4.4. Command Procedures	189
6.4.5. Programming Direct Manipulation Interfaces	190
6.4.6. Conclusion	191
6.5. EFFECT OF CHOICE OF REPRESENTATION O	N 191
TASK PERFORMANCE	
6.6. MODES IN THE USER INTERFACE	195
6.7. FORMAL DESCRIPTION OF DIRECT	198
MANIPULATION USER INTERFACES	
6.7.1. An Example Specification	201
6.7.2. Discussion of Example	203
6.7.3. Inheritance	204
6.8. THE INTELLIGENT USER INTERFACE	207
6.9. CONCLUSIONS	208
7. DIALOGUE DESIGN FOR INTELLIGENT INTERF	ACES 213
7.1. INTRODUCTION	213
7.2. DEVELOPMENTS TOWARD INTELLIGENT	214
INTERFACES	214
7.2.1. Static Dialogues	214
7.2.2. Flexible Dialogues	216
7.2.3. Adaptive Dialogues	217
7.2.4. Intelligent Interfaces	217
7.3. ALTERNATIVE DIALOGUES FOR INTELLIGEN	
INTERFACES	N1 223
7.3.1. Verbal Dialogues	223
7.3.2. Spatial Dialogues	227
7.3.3. Research Issues	231
7.4. AIDING DIALOGUES FOR INTELLIGENT	231
INTERFACES	231
7.4.1. Fact-Oriented and Procedural Aiding	232
7.4.2. Passive and Active Aiding	234
7.4.3. Assistance Dialogues	235
7.4.4. Instructional Dialogues	244
7.4.5. Research Issues	249
7.5. CONCLUSIONS	249

8. CONSTRUCTING KNOWLEDGE BASES: A PROCESS FOR	265
INSTRUCTION S.R. Trollip and R.C. Lippert	
8.1. INTRODUCTION	265
8.2. THE PROBLEM	267
8.3. COMPUTERS IN INSTRUCTION	269
8.3.1. Traditional Computer-Assisted Instruction	270
8.3.2. Intelligent Computer-Assisted Instruction	274
8.3.3. Environmental Approaches	279
8.3.4. Summary	280
8.4. CONSTRUCTING KNOWLEDGE BASES	281
8.4.1. Structure of A Simple Knowledge Base	285
8.4.2. A Simple Expert System Shell	289
8.4.3. Summary	292
8.5. IMPLEMENTATION	293
8.5.1. Content Structure	296
8.5.2. Procedural Knowledge	298
8.5.3. Refinement of Knowledge	299
8.5.4. Problem Solving	301
8.5.5. Summary	302
8.6. CONCLUSION	302
9. UNDERSTANDING AND ENHANCING "ON-LINE"	313
PROCEDURAL DOCUMENTATION USAGE	
G.L. Myers, M.W. Scerbo, J.L. Limanowski and A.D. Fisk	
9.1. INTRODUCTION	313
9.2. COMPUTER SYSTEM DOCUMENTATION: 1960-1987	315
9.3. THE STRUCTURED INTERVIEW STUDY	318
9.3.1. Type of Training	319
9.3.2. Book Referencing Skills	319
9.3.3. Supervisor Support of MAP Use	320
9.3.4. User Attitudes toward MAPs	320
9.3.5. Conclusion: Structured Interviews	320
9.4. CONTROLLED OBSERVATION OF MAP USERS	321
9.4.1. Documentation Usage Strategies	322
9.4.2. Expert vs. Novices with Training	323
9.4.3. Conclusion: Controlled Observation	324
9.5. PICTURE VS. TEXT STUDIES	324
9.5.1. Speed	326

9.5.2. Accuracy	326
9.5.3. Incongruous Training and Testing Situations	327
9.5.4. Conclusion: Picture vs. Text Studies	327
9.6. THE IMPLEMENTATION OF ON-LINE MAPS	328
9.7. SUMMARY	329
10. KNOWLEDGE-BASED SUPERVISORY CONTROL FOR	333
AEROSPACE APPLICATIONS	
T.J. Higgins, M.H. Chignell and P.A. Hancock	
10.1. INTRODUCTION	333
10.2. SUPERVISORY CONTROL IN AVIATION	335
10.2.1. Communication and Cognitive Dysfunction	338
10.3. MENTAL WORKLOAD AND STRESS IN AVIATION	339
10.3.1. Mental Workload	340
10.3.2. Operator Responses to Stress	343
10.3.3. Rhythmic Fluctuations in Operator Capability	344
10.4. AUGMENTED SUPERVISORY CONTROL	345
10.4.1. Expert Systems	345
10.4.2. Static and Dynamic Function Allocation	347
10.4.3. Expertise	349
10.4.4. Tools and Techniques	350
10.5. AUGMENTED SUPERVISORY CONTROL IN	351
AVIATION	
10.5.1. Uses of Expert Systems	352
10.5.2. Why Augment Supervisory Control?	353
10.6. AUGMENTED SUPERVISORY CONTROL AND	354
INTELLIGENT INTERFACES	
10.7. CONCLUSIONS	357
INDEX	365

1. AN INTRODUCTION TO INTELLIGENT INTERFACES

M.H. Chignell

Department of Industrial and Systems Engineering

P.A. Hancock
Department of Safety Science and
Human Factors Department
Institute of Safety and Systems Management
University of Southern California

and

A. Loewenthal Lockheed Aeronautical System Company, Burbank, California

1.1. INTRODUCTION

Computing has evolved rapidly along several dimensions which include processing speed, software complexity, and mass storage capability. Although mainframes and minicomputers are generally more powerful than microcomputers at any given point in time, contemporary microcomputer workstations not only exceed recent mainframe capabilities (Peled, 1987), they also include high resolution screens, efficient pointing devices, and a wide range of powerful software applications to promote operational efficiency. At the center of these developments is the interface. Intelligent interfaces represent the latest development in human-computer interaction and interface design.

This concept of an intelligent interface is one of a number of proposals that offer innovative solutions to the problems encountered in human-computer interaction. Related developments range from the construction of advanced interfaces (Engelbart, 1963; 1986), through related concepts of adaptive interfaces (e.g., Edmonds, 1981) and dynamic media (Kay & Goldberg, 1977), to more recent implementations of specific systems (e.g., Hollan, Hutchins, & Weizman,

1984; Mark, 1981, 1986).

In our view, an intelligent interface is:

An intelligent entity mediating between two or more interacting agents who possess an incomplete understanding of each others' knowledge and/or form of communication.

Clearly, the views represented by other authors in the following chapters of this text do not necessarily support our definition. It is instructive to compare their perspective against our own, as it is through such a process of refinement and argument that a consensus definition of the concept may be derived.

The principal role of an intelligent interface as defined in this book is one of an intermediary which bridges the gap between humans and computers (Card, this volume; see also Chignell & Hancock, 1987). The function of this intermediary is to encode and translate information which must be communicated between computer and operator and viceversa. In this introductory chapter we define the concept of intelligent interfaces and integrate such an approach with related strategies for interaction, including developments human-computer manipulation, natural language interfaces, hypertext, and expert systems. We also provide a broad overview of the issues associated with intelligent interface design. The what, when, and how of intelligent interfaces describe a developmental process. The what concerns the nature purpose of the intelligent interface. The when is the critical consideration in knowing the relevant circumstances in which an intelligent interface is required. Our knowledge in regard to this step is currently fairly rudimentary because there has not be a great deal of experience in building and using intelligent interfaces. The how refers to the identification of appropriate component elements and the manner in which they are assembled into a functional whole. We consider the different models of intelligent interfaces that are available, when these types of interface are appropriate and how they may be constructed. During this discussion we will show how later chapters in the book address the issues that are raised.

1.2. ADVANCES IN INTERFACE TECHNOLOGY

Intelligent interfaces represent the latest stage of development in the evolution of the computer interface. This process has occurred with extreme rapidity. It is little more than a decade since large numbers of computer cards were stacked in heavy and unwieldy boxes for repetitive processing on card readers. Even that method was an improvement on earlier uses of such media as paper tape input. Today, interfaces are screen-oriented and utilize abstract models of data on the screen rather than the more cumbersome physical models of the past.

As the physical interface continues to become more transparent, with the utilization of pointing devices, windowing technologies, and similar tools, the role of the cognitive interface (Chignell & Hancock, 1986a; Norman, 1986) becomes progressively more important. At present the computer tools that support this cognitive interface are still fairly rudimentary. Despite the increases in the size of working memory available to the user, only a small portion of this capability in personal computers is given over to manipulating the interface. In comparison to developments in hardware technology, methods of interface design are fairly primitive, largely because there are few models to guide the interface designer. In order to make interfaces intelligent, we will need to develop sophisticated models of how interfaces function, along with tools that can implement these models in software systems. We begin by considering what the purpose of the interface really is and what functionality is implied by this purpose.

1.2.1. Functions of the Interface

In general, an interface may be thought of as a device or representation that allows two agents to perform a task cooperatively. The environment represents the background against which this interaction occurs. The environment may be conceived of as a hierarchy of embedded envelopes which constitute tolerable limits for action (Hancock & Rosenberg, 1987). While concerns for interface optimization rarely focus on the nature of the ambient surround, there are circumstances in which the physical characteristics of the environment may have an overriding influence on the manner in which