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PREFACE

For nearly a century now, hydrodynamic stability has been recog-
nized as one of the central problems of fluid mechanics. It is
concerned with when and how laminar flows break down, their
subsequent development, and their eventual transition to turbu-
lence. It has many applications in engineering, in meteorology and
oceanography, and in astrophysics and geophysics. Some of these
applications are mentioned, but the book is written from the point
of view intrinsic to fluid mechanics and applied mathematics. Thus,
although we have emphasized the analytical aspects of the theory,
we have also tried, wherever possible, to relate the theory to
experimental and numerical results.

Our aim in writing this book has been twofold. Firstly, in Chap-
ters 1-4, to describe the fundamental ideas, methods, and results in
three major areas of the subject: thermal convection, rotating and
curved flows, and parallel shear flows. Secondly, to provide an
introduction to some aspects of the subject which are of current
research interest. These include some of the more recent develop-
ments in the asymptotic theory of the Orr—-Sommerfeld equation
in Chapter 5, some applications of the linear stability theory in
Chapter 6 and finally, in Chapter 7, a discussion of some of the
fundamental ideas involved in current work on the nonlinear theory
of hydrodynamic stability.

Each chapter ends with a number of problems which often extend
or supplement the main text as well as provide exercises to help the
reader understand the topics. An asterisk is used to indicate those
problems which we judge to be relatively long or difficult. Some
hints and references are given to help in the solution of many of the
problems. We have also prepared answers to the problems which
may be obtained from either author for a nominal charge to cover
reproduction and postage costs.



Xiv PREFACE

Thus this is a textbook suitable for a graduate course on the
fundamental ideas and methods and on the major applications of -
the theory of hydrodynamic stability. It also leads the reader up to
the frontiers of research on selected topics. In general we have
assumed that the reader is familiar with whatever mathematical
methods are needed, notably in the theories of ordinary and of
partial differential equations and in the theory of functions of a
complex variable. But we have explained some specialized and
modern mathematical points at length where it seems that they are
likely to be unfamiliar to most readers.

We are grateful to our many colleagues throughout the world
who have responded so generously to our various inquiries. In
particular, we thank A. Davey, T. H. Hughes, and L. M. Mack for
providing new or unpublished numerical results, R. J. Donnelly,
E. L. Koschmieder and S. A. Thorpe for providing photographs, J.
P. Cleave for advice on some mathematical points, L. C. Woods for
advice on the presentation of the material, B. S. Ng for detailed
comments on Chapters 1-5, and A. Davey and J. T. Stuart for
constructive criticisms, of a draft of Chapter 7. For help with the
typing of the manuscript we also thank N. Thorp in Bristol and M.
Bowie, F. Flowers, L. Henley, and M. Newman in Chicago. We are
especially indebted to S. Chandrasekhar and C. C. Lin, who have
contributed so much to the theory of hydrodynamic stability;
through their papers and books, and through our personal contacts
with them, they have greatly influenced our work on the subject.
One of us (W.H.R.) also wishes to acknowledge with thanks the
generous support provided over the years by the U.S. National
Science Foundation, most recently under grant no. MCS 78-01249.

And, finally, we should like to thank G. K. Batchelor not only for
his help as editor of this series but also for his kindness during an
early stage in our careers when it was our good fortune to be
associated with him.

Bristol P.G:D:
Chicago W.H.R.
August 1979

For this new impression we have corrected some misprints and other errors, and

we have inserted Problem 1.12 on p. 31 and an addendum on pp. 479-80.

March 1982 P.G.D.
W.H.R.
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CHAPTER 1

INTRODUCTION

Yet not every solution of the equations of motion, even if it is exact,
can actually occur in Nature. The flows that occur in Nature must not
only obey the equations of fluid dynamics, but also be stable.

—-L.D. Landau & E. M. Lifshitz (1959)

1 Introduction

The essential problems of hydrodynamic stability were recognized
and formulated in the nineteenth century, notably by Helmholtz,
Kelvin, Rayleigh and Reynolds. It is difficult to introduce these
problems more clearly than in Osborne Reynolds’s (1883) own
description of his classic series of experiments on the instability of
flow in a pipe.

The ... experiments were made on three tubes . ... The diameters of
these were nearly 1 inch, 3 inch and } inch. They were all . .. fitted with
trumpet mouthpieces, so that the water might enter without disturbance.
The water was drawn through the tubes out of a large glass tank, in which
the tubes were immersed, arrangements being made so that a streak or
streaks of highly coloured water entered the tubes with the clear water.

The general results were as follows:—

(1) When the velocities were sufficiently low, the streak of colour
extended in a beautiful straight line through the tube, Fig. 1.1(a).

(2) If the water in the tank had not quite settled to rest, at sufficiently low
velocities, the streak would shift about the tube, but there was no
appearance of sinuosity.

(3) As the velocity was increased by small stages, at some point in the
tube, always at a considerable distance from the trumpet or intake, the
colour band would all at once mix up with the surrounding water, and fill
the rest of the tube with a mass of coloured water, as in Fig. 1.1(4). Any
increase in the velocity caused the point of break down to approach the
trumpet, but with no velocities that were tried did it reach this. On viewing
the tube by the light of an electric spark, the mass of colour resolved itself
into a mass of more or less distinct curls, showing eddies, as in Fig. 1.1(c).

Reynolds went on to show that the laminar flow, the smooth flow
he described in paragraph (1), breaks down when Va/v exceeds a
certain critical value, V' being the maximum velocity of the water in
the tube, a the radius of the tube, and » the kinematic viscosity of
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Fig. 1.1. (a) Laminar flow in a pipe. (b) Transition to turbulent flow in a
pipe. (c¢) Transition to turbulent flow as seen when illuminated by a spark.
(From Reynolds 1883.)

water at the appropriate temperature. This dimensionless number
Va/v, now called the Reynolds number, specifies any class of
dynamically similar flows through a pipe; here we shall denote the
number by R. The series of experiments gave the critical value R, of
the Reynolds number as nearly 13 000. However,

the critical velocity was very sensitive to disturbance in the water before
entering the tubes . ... This at once suggested the idea that the condition
might be one of instability for disturbance of a certain magnitude and
stable for smaller disturbances.

At the critical velocity

another phenomenon . . . was the intermittent character of the disturbance.
The disturbance would suddenly come on through a certain length of tube
and pass away and then come on again, giving the appearance of flashes,
and these flashes would often commence successively at one point in the
pipe. The appearance when the flashes succeeded each other rapidly was as
shown . ..

in Fig. 1.2. Such ‘flashes’ are now called turbulent spots or turbulent
bursts. Below the critical Reynolds number there was laminar
Poiseuille flow with a parabolic velocity profile, the resistance of the
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Fig. 1.2. Turbulent spots in a pipe. (From Reynolds 1883.)

pipe to the flow of water being proportional to the mean velocity. As
the velocity increased above its critical value, Reynolds found that
the flow became turbulent, with a chaotic motion that strongly
diffused the dye throughout the water in the tube. The resistance of
the pipe to turbulent flow grew in proportion to the square of the
mean velocity.

Later experimentalists have introduced disturbances of finite
amplitude at the intake or used tubes with roughened walls to find
R, as low as 2000, and have used such regular flows and such
smooth-walled tubes that R. was 40 000 or even more.

Reynolds’s description illustrates the aims of the study of
hydrodynamic stability: to find whether a given laminar flow is
unstable and, if so, to find how it breaks down into turbulence or
some other laminar flow.

Methods of analysing the stability of flows were formulated in
Reynolds’s time. The method of normal modes for studying the
oscillations and instability of a dynamical system of particles and
rigid bodies was already highly developed. A known solution of
Newton’s or Lagrange’s equations of motion for the system was
perturbed. The equations were linearized by neglecting products of
the perturbations. It was further assumed that the perturbation of
each quantity could be resolved into independent components or
modes varying with time ¢ like e* for some constant s, which is in
general complex. The values of s for the modes were calculated
from the linearized equations. If the real part of s was found to be
positive for any mode, the system was deemed unstable because a
general initial small perturbation of the system would grow
exponentially in time until it was no longer small. Stokes, Kelvin
and Rayleigh adapted this method of normal modes to fluid
dynamics. The essential mathematical difference between fluid and
particle dynamics is that the equations of motion are partial rather
than ordinary differential equations. This difference leads to many
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technical difficulties in hydrodynamic stability, which, to this day,
have been overcome for only a few classes of flows with very simple
configurations.

Indeed, Reynolds’s experiment itself is still imperfectly under-
stood. However, we can explain qualitatively the transition from
laminar flow to turbulence with some confidence. Poiseuille flow
with a parabolic profile is stable to infinitesimal disturbances at all
Reynolds numbers. Some way below the observed critical Reynolds
number a finite disturbance may grow if it is not too small. Above
the critical Reynolds number quite small disturbances, perhaps
introduced at the inlet or by an irregularity of the wall of the tube,
grow rapidly with a sinuous motion. Soon they grow so much that
nonlinearity becomes strong and large eddies (Fig. 1.1(c)) or
turbulent spots (Fig. 1.2) form. At high Reynolds numbers turbu-
lence ensues at once and the flow becomes random and strongly
nonlinear everywhere. This instability of Poiseuille flow may be
contrasted with that of plane Poiseuille flow, which is unstable to
infinitesimal disturbances at sufficiently large values of the Rey-
nolds number. This explanation is supported by the treatment of the
theory of the linear stability of Poiseuille flow in § 31 and of the
nonlinear stability in § 49.1.

The physical mechanisms of Reynolds’s experiments on instabil-
ity of Poiseuille flow in a pipe are vividly illustrated by a film loop
made by Stewart (FL 1968) for the Educational Development
Center. This loop consists of edited excerpts from his longer film on
Turbulence (Stewart F 1968). Details of these and other motion
pictures on hydrodynamic stability may be found at the end of the
bibliography.

2 Mechanisms of instability

Few laminar flows correspond to known solutions of the nonlinear
equations of motion. Fewer are simple enough to allow detailed
analysis of their instability. Consequently research on hydro-
dynamic stability has been deep but narrow. We are forced to study

+ Many of the features of the transition from laminar to turbulent flow can easily be
seen by observing the smoke from a cigarette. Light the cigarette, point the burning
tip upwards in still air, and observe the smoke as it rises from rest at the hot tip.
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the stability of a few classes of simple laminar flows, mostly with
planar, axial or spherical symmetry. Unfortunately, their simplicity
obscures some general aspects of instability, especially three-
dimensional ones, such as flow with stretching of vortex lines. To
gain a wider understanding of hydrodynamic stability and to put
these simple flows in perspective as prototypes, it is helpful to sketch
the important physical mechanisms of instability.

Broadly speaking, one may say that instability occurs because
there is some disturbance of the equilibrium of the external forces,
inertia and viscous stresses of a fluid. We shall discuss the external
forces first. External forces of interest are buoyancy in a fluid of
variable density, surface tension, magnetohydrodynamic forces, etc.
It is also convenient to regard centrifugal and Coriolis forces as
external forces when there is rotation of the whole system in which
the fluid moves. If heavy fluid rests above light fluid it is clear that
the fluids tend to overturn under the action of gravity. A similar
instability occurs on the free surface of a container of liquid when it
is moved downwards at a uniform acceleration greater than the
gravitational acceleration. There is in fact a close analogy between
the problem of instability of a fluid of variable density, namely
Bénard convection bounded by horizontal planes, and the problem
of instability of axisymmetric swirling flow of homogeneous fluid,
namely Taylor vortices bounded by two coaxial rotating cylinders.
The analogue of the density turns out to be the square of the
circulation or swirl. If in Couette flow the circulation around the
inner cylinder is greater in magnitude than that around the outer,
the centrifugal force tends to throw out the fluid near the inner
cylinder as an overturning instability. This centrifugal instability
may occur also in flows along a rigid curved surface such as a
concave wall of a channel. Surface tension resists the increase of
area of a surface and so exerts a stabilizing influence, particularly on
disturbances of small length scale. A magnetic field can inhibit the
motion of an electrically conducting fluid across the magnetic lines
of force and thereby usually tends to stabilize flows.

In the absence of any external force or of viscosity, a fluid moves
according to the equilibrium between its inertia and internal
stresses of pressure. A small disturbance may upset this equili-
brium. The tendency of fluid to move down pressure gradients can
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be seen to amplify disturbances of certain flows and thereby create
instability. This instability can be depicted more reliably in terms of
interactions of the vortex lines, which are convected and stretched
by the motion of the fluid.

An obvious effect of viscosity is to dissipate the energy of any
disturbance and thereby stabilize a flow. Indeed, for this reason any
bounded flow is stable if the viscosity is large enough. So, by and
large, viscosity has a stabilizing influence. Viscosity has also the
more complicated effect of diffusing momentum. This can make
some flows, notably parallel shear flows, unstable although the same
flows of an inviscid fluid are stable.

Thermal conductivity, or molecular diffusion of heat, has some
effects similar to those of viscosity, or molecular diffusion of
momentum. It tends to smooth out the temperature differences of a
disturbance and is usually a stabilizing influence.

It is natural to consider the stability of primarily steady flows, but
unsteady ones are also of some practical importance. The accelera-
tion of a laminar flow plays an identifiable role in its stability.
Analysis is difficult in general, but it emerges that acceleration of a
laminar flow has a stabilizing and deceleration a destabilizing
tendency. Flows that oscillate in time, such as Poiseuille flow driven
through a circular pipe by an oscillatory pressure gradient, have
intricate stability characteristics. Parametric stability or instability
may occur, whereby the free oscillations of disturbances of the
mean flow resonate with the forced oscillations of the flow.

Finally, the boundaries of a flow are an important factor. They
constrain the development of a disturbance and usually the closer
they are together the more stable the flow. However, they some-
times give rise to strong shear in boundary layers which is diffused
outwards by viscosity and so leads to instability of the flow.

In a typical flow more than one of these mechanisms may act. For
example, in plane Poiseuille flow the dual effects of viscosity, the
inertia and the boundaries all influence the instability. Plane
‘Poiseuille flow of inviscid fluid is stable. At large but finite Reynolds
numbers the diffusion of momentum from thin shear layers near the
walls leads to instability. At small Reynolds numbers the dissipative
role of viscosity is dominant and there is stability. This leads to a
critical value of the dimensionless number R representing the ratio
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of the magnitudes of the destabilizing forces of shear and stabilizing
viscous forces for which their effects may be said to balance.

This summary of mechanisms of hydrodynamic stability will be
‘given substance by detailed problems in this and later chapters. But
the necessary details of the instability of any particular flow should
_ not obscure these general mechanisms, whose recognition helps to
classify as well as to understand problems. Instability arising from
an upset of the equilibrium between an external force and dis-
sipative effects is usually simpler than inertial instability. Prototype
problems of this simpler instability will be analysed first, the linear
instability of a fluid heated from below in Chapter 2 and centrifugal
instability in Chapter 3. If fluid lies at rest between two horizontal
plates, the lower one being hotter than the upper, then we have light
fluid below heavy fluid. The buoyancy tends to overturn the fluid.
This tendency is countered by the dissipative and diffusive effects of
viscosity and thermal conductivity. The dimensionless number
typifying the ratio of the destabilizing buoyancy to the stabilizing
diffusive forces is called the Rayleigh number; its critical value is
calculated and related to experiments. In this flow, viscosity and
thermal conductivity have only stabilizing effects. The instability of
Couette flow between rotating cylinders is analogous, viscosity
tending only to stabilize the centrifugal instability. The linear
instability of parallel shear flows is treated in Chapter 4, where it is
shown that viscosity typically plays the dual roles of stabilizer and
destabilizer. There is an imbalance between the inertia and both the
dissipative and diffusive effects of viscosity. The physical
mechanism of this instability and its mathematical description is
more difficult to understand than that of instability due to an
external force, and will be explained in detail in Chapter 4. The
most difficult mathematical topics, involving the asymptotic theory
of the solutions of the Orr-Sommerfeld equation which governs the
problem, will be elaborated in Chapter 5. Chapter 5 may be ignored
by the less mathematically inclined reader who is interested in
stability characteristics rather than in deducing them. More
complicated flows whose stability is governed by more than two of
the mechanisms will be presented in Chapter 6. Their mathematical
difficulties are so formidable that only a few illustrative examples
will be given. Also a few other problems will be discussed, in



