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PREFACE

This book is the first of a two-volume set that is intended as a replacement
for my earlier book Principles of Database Systems (Ullman [1982] in the refer
ences). Since the latter book was written, it became clear that what I though
of as “database systems” formed but one (important) point in a spectrum c
systems that share a capability to manage large amounts of data efficient];

but differ in the expressiveness of the languages used to access that data. i

has become fashionable to refer to the statements of these more expressive lan-
guages as “knowledge,” a term I abhor but find myself incapable of avoiding
Thus, in the new book I tried to integrate_“classical” database concepts with
the technolgy that is just now being developed to support applications wher:
“knowledge” is required along with “data.” »

The first volume is devoted primarily to classical database sysiems. How
ever, knowledge, as represented by logical rules, is covered extensively in Chap
ter 3. From that chapter, only the material on relational calculus, a “classical’
database topic, is used extensively in this volume. We shall return to the top.c
of logic as a user interfade language in the second voluine, where it is one ¢
the major themes. We also find in the first volume a discussion of “object
oriented” database systems, which, along with “knowledge-base systerms.” is an.
important modern development.

Chapter 1 introduces the terminology for database, object-base, anc
knowledge-base systems; it attempts to explain the relationships among these
systems, and how they fit into an unfolding development of progresssively nore
powerful systems. Chapters 2 and 3 mntroduce us to data models as used in
these three classes of systems; “data models” are the mathematical absirac-
tions we use to represent the real world by data and knowledge. In Chapter
4 we meet several important query languages that are based on the relational
data model, and in Chapter 5 we meet languages that are based on one of
several “object-oriented” models.

Chapter 6 covers physical organization of data and the tricks that are
used to answer, efficiently, queries posed in the languages of Chapters 4 and
5. Then, in Chapter 7 we discuss some of the theory for relational database
systems, especially how one represents data in that model in ways that avoid
redundancy and other problems. Chapter 8 covers security and integrity aspects
of database systems, and-in Chapter 9 we discuss concurrency control, the
techniques that make it possible for many processes to operate on one database

v



vi PREFACE

simultaneously, without producing paradoxical results. Finally, in Chapter 10.
we consider techniques for dealing with distributed database systems.

It is expected that the second volume will cover query optimization tech-
niques, both for “classical” database systems (chiefly relational systems) and
for the new class of “knowledge-base” systems that are presently under devel-
opment, and which will rely heavily on the optimization of queries expressed
in logical terms. We shall also find a discussion of some of these experimental
systems. Finally, Volume II will cover “universal relation” systems, a body of
techniques developed to make sense of queries that are expressed in natural
language, or in a language sufficiently informal that the querier does not have
to know about the structure of the database.

Mapping the. Old Book to the New

Readers familiar with Ullman [1982] will find most of that material in this vol-
ume. Only the chapters on optimization and on universal relations are deferred
to Volume II, and a few sections of the old book have been excised. The mate-
rial in the old Chapter 1 has been divided between the new Chapters 1 and 2.
Sections 1.1 and 1.2 remain in Chapter 1, while Sections 1.3 and 1.4 form the
core of Chapter 2 (data models) in the new book. Chapter 2 of the old (phys-
ical organization) now appears in Chapter 6, along with material on physical
organization that formerly appeared in Sections 3.2, 4.2, and 5.1. Some of the
material in the old Section 2.8 (partial-match queries) has been excised.

The remainders of Chapters 3 and 4 (network and hierarchical languages)
appear in the new Chapter 5 (object-oriented langauges), along with new ma-
terial on OPAL, which is a true, modern object-oriented language for database
systems. The old Chapter 5, on the relational model, has been dispersed. Sec-
tion 5.1, on physical structures, moves to Chapter 6, Section 5.2, on relational
algebra, moves to Chapter 2 (data models), while Section 5.3, on relational
calculus, moves to Chapter 3 (logic and knowledge) The old Chapter 6 (rela-
tional languages) becomes the new Chapter 4. The discussion of the language
SQUARE has been omitted, but the language SQL is covered much more exten-
sively, including an example of how SQL can be interfaced with a host language,
C in particular.

Only Chapter 7 (relational theory) remains where it was and remains rela-
tively unchanged. A discussion of the Tsou-Fischer algorithm for constructing
Boyce-Codd normal form schemes is included, as well as a pragmatic discus-
sion of the virtues and dangers of decomposition or “normalization.” Chapters
8 (query optimization) and 9 (universal relation systems) are deferred to the
second volume. Chapter 10 (security and integrity) becomes Chapter 8. Th€1
discussion on statistical databases is excised, but more examples, drawn from
SQL and OPAL, are included. Chapter 11 (concurrency) becomes Chapter 9,
and is expanded in several ways. Chapter 12 (distributed systems) is divide
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in two. The first half, on query optimization for distributed systems, is moved
to Volume II, while the second half forms the core of the new Chapter 10; the
latter includes not only distributed locking, but also covers other issues such as
distributed agreement (“distributed commit”).

Exercises

Each chapter, except the first, includes an extensive set of exercises, both to
test the basic concepts of the chapter and in many cases to extend these ideas.
The most difficult exercises are marked with a double star, while exercises of
intermediate difficulty have a single star.
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CHAPTER 1

Databases,
Object Bases,
and

Knowledge Bases

A database management system (DBMS) is an important type of programming
system, used today on the biggest and the smallest computers. As for other
major forms of system software, such as compilers and operating systems, a well-
understood set of principles for database management systems has developed
over the years, and these concepts are useful both for understanding how to
use these systems effectively and for designing and implementing DBMS’s. In
this book we shall study the key ideas that make database management systems
possible. The first three sections of this chapter introduce the basic terminology
and viewpoints needed for the understanding of database systems.

In Section 1.4, we discuss some of the newer applications for which the
classical form of database management system does not appear to be adequate.
Then, we discuss two classes of enhanced DBMS’s that are of rising impor-
tance. In Section 1.5 we mention “object-base” systems and discuss how they
solve the problems posed by the new applications. Section 1.6 introduces us to
“knowledge systems,” which are generally systems implementing logic, in one
or another form, as a programming language. A “knowledge-base management
system” (KBMS) is then a programming system that has the capabilities of
both a DBMS and a knowledge system. In essence, the highly touted “Fifth
Generation” project’s goal is to implement a KBMS and the hardware on which
it can run efficiently. The relationships among these different kinds of systems
are summarized in Section 1.7.

The reader may find some of the material in this chapter difficult to follow
at first. All important concepts found in Chapter 1 will be covered in greater
detail in later chapters, so it is appropriate to skim the material found here at
a first reading. '
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1.1 THE CAPABILITIES OF A DBMS

There are two qualities that distinguish database management systems from,
other sorts of programming systems.

1. The ability to manage persistent data, and
2. The ability to access large amounts of data efficiently.

Point (1) merely states that there is a database which exists permanently; the
contents of this database is the data that a DBMS accesses and manages. Point
(2) distinguishes a DBMS from a file system, which also manages persistent
data, but does not generally help provide fast access to arbitrary portions of
the data. A DBMS’s capabilities are needed most when the amount of data is
very large, because for small amounts of data, simple access techniques, such as
linear scans of the data, are usually adequate. We shall discuss this aspect of a
DBMS briefly in the present section; in Chapter. 6 the-issue of access efficiency
is studied in detail.

While we regard the above two properties of a DBMS as fundamental,
there are a number of other capabilities that are almost universally found in
commercial DBMS’s. These are:

a) Support for at least one data model, or mathematical abstraction through
which the user can view the data.

b) Support for certain high-level languages that allow the user to define the
structure of data, access data, and manipulate data.

c) Transaction management, the capability to provide correct, concurrent ac-
cess to the database by many users at once.

d) Access control, the ability to limit access to data by unauthorized users,
and the ability to check the validity of data:

e) Resiliency, the ability to recover from system failures without losing data.

Data Models

Each DBMS provides at least one abstract model of data that allows the user
to see information not as raw bits, but in more understandable terms. In fact,
it is usually possible to see data at several levels of abstraction, as discussed in
Section 1.2. At a relatively low level, a DBMS commonly allows us to visualize
data as composed of files.

Example 1.1: A corporation would normally keep a file concerning its em-
ployees, and the record for an employee might have fields for his first name,
last name, employee ID number, salary, home address, and probably dozens of
other pieces of information. For our simple example, let us suppose we keep in
the record only the employee’s name and the manager of the employee. The
record structure would look like:
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record
name: char([30];
manager: char[30];
end

The file itself is a sequence of records, one for each employee of the company.
O :

In many of the data models we shall discuss, a file of records is abstracted
to what is often called a relation, which might be described by

EMPLOYEES(NAME, MANAGER)

He::, EMPLOYEES is the name of the relation, corresponding to the file men-
tioned in Example 1.1. NAME and MANAGER are field names; fields are often
called attributes, when relations are being talked about.

While we shall, in this informal introductory chapter, sometimes use “file”
and “relation” as synonyms, the reader should be alert to the fact that they
are different concepts and are used quite differently when we get to the details
of database systems. A relation is an abstraction of a file, where the data type
of fields is generally of little concern, and where order among records is not
specified. Records in a relation are called tuples. Thus, a file is a list of records,
but a relation is a set of tuples.

Efficient File Access

The ability to store a file is not remarkable; the file system associated with
any operating system does that. The capability of a DBMS is seen when we
access the data of a file. For example, suppose we wish to find the manager
of employee “Clark Kent.” If the company has thousands of employees, it is
very expensive to search the entire file to find the one with NAME = “Clark
Kent”. A DBMS helps us to set up “index files,” or “indices,” that allow us
to access the record for “Clark Kent” in essentially one stroke, no matter how
“large the file is. Likewise, insertion of new records or deletion of old ones can
be accomplished in time that is small and essentially constant, independent of
the file’s length. An example of an appropriate index structure that may be
. familiar to the reader is a hash table with NAME as the key. This and other
" index structures are discussed in Chapter 6.

Another thing a DBMS helps us do is navigate among files, that is, to

combine values in two or more files to obtain the information we want. The
next example illustrates navigation. '
Example 1.2: Suppose we stored in an employee’s record the department for
“which he works, but not his manager. In another file, called DEPARTMENTS,
we have records that associate a department’s name with its manager. In the
style of relations, we have:
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EMPLOYEES(NAME, DEPT)
DEPARTMENTS(DEPT, MANAGER)

Now, if we want to find Clark Kent’s manager, we need to navigate from
EMPLOYEES to DEPARTMENTS, using the equality of the DEPT field in
both files. That is, we first find the record in the EMPLOYEES file that has
NAME = “Clark Kent”, and from that record we get the DEPT value, which we
all know is “News”. Then, we look into the DEPARTMENTS file for the record
having DEPT = “News”, and there we find MANAGER = “Perry White”. If
we set up the right indices, we can perform each of these accesses in some small,
constant amount of time, independent of the lengths of the files. [J

Query Languages

To make access to files easier, a DBMS provides a query language, or data
manipulation language, to express operations on files. Query languages differ in
the level of detail they require of the user, with systems based on the relational
data model generally requiring less detail than languages based on other models.

Example 1.3: The query discussed in Example 1.2, “find the manager of Clark
Kent,” could be written in the language SQL, which is based on the relational
model of data, as shown in Figure 1.1. The language SQL will be taught begin-
ning in Section 4.6. For the moment, let us note that line (1) tells the DBMS
to print the manager as an answer, line (2) says to look at the EMPLOYEES
and DEPARTMENTS relations, (3) says the employee’s name is “Clark Kent,”
and the last line says that the manager is connected to the employee by being
associated (in the DEPARTMENTS relation) with the same department that
the employee is associated with (in the EMPLOYEES relation).

(1) SELECT MANAGER

(2) FROM EMPLOYEES, DEPARTMENTS '
(3) WHERE EMPLOYEES.NAME = 'Clark Kent' ’

(4) AND EMPLOYEES.DEPT = DEPARTMENTS.DEPT;

Figure 1.1 Example SQL query.

In Figure 1.2 we see the same query written in the siinplified version of the
network-model query language DML that we discuss in Chapter 5. For a rough
description of what these DML statements mean, lines (1) and (2) together tell
the DBMS to find the record for Clark Kent in the EMPLOYEES file. Line
(3) uses an implied “set” structure EMP-DEPT that connects employees to
their departments, to find the department that “owns” the employee (“set™
and “owns” are technical terms of DML’s data model), i.e., the department
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to which the employee belongs. Line (4) exploits the assumption that there is
another set structure DEPT-MGR, relating departments to their managers. On
line (5) we find and print the first manager listed for Clark Kent’s department,
and technically, we would have to search for additional managers for the same
department, steps which we omit in Figure 1.2. Note that the print operation
on line (5) is not part of the query language, but part of the surrounding “host
language,” which is an ordinary programming language.

The reader should notice that navigation among files is made far more ex-
plicit in DML than in SQL, so extra effort is required of the DML programmer.
The difference is not just the extra line of code in Figure 1.2 compared with
Figure 1.1; rather it is that Figure 1.2 states how we are to get from one record
to the next, while Figure 1.1 says only how the answer relates to the data. This
“declarativeness” of SQL and other languages based on the relational model
is an important reason why systems based on that model are becoming pro-
gressively more popular. We shall have more to say about declarativeness in
Section 1.4. [J

(1) EMPLOYEES.NAME := "Clark Kent"

(2) FIND EMPLOYEES RECORD BY CALC-KEY

(3) FIND OWNER OF CURRENT EMP-DEPT SET

(4) FIND FIRST MANAGER RECORD IN CURRENT DEPT-MGR SET
(5) print MANAGER.NAME

Figure 1.2 Example query written in DML.

Transaction Management

Another important capability of a DBMS is the ability to manage simultane-
ously large numbers of transactions, which are procedures operating on the
database. Some databases are so large that they can only be useful if they
are operated upon simultaneously by many computers; often these computers
are dispersed around the country or the world. The database systems used by
banks, accessed almost instantaneously by hundreds or thousands of automated
teller machines, as well as by an equal or greater number of employees in the
bank branches, is typical of this sort of database. An airline reservation system
is another geod example.

Sometimes, two accesses do net interfere with each other. For example,
any number of transactions can be reading your bank balance at the same
time, without any inconsistency. But if you are in the bank depositing your
salary check at the exact instant your spouse is extracting money from an
automatic teller, the result of the two transactions occurring simultaneously
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and without coordination is unpredictable. Thus, transactions that modify a
data item must “lock out” other transactions trying to read or write that item
“at the same time. A DBMS must therefore provide some form of concurrency
control to prevent uncoordinated access to the same data item by more than
_one transaction. Options and techniques for concurrency control are discussed
in Chapter 9.

Even more complex problems occur when the database is distributed over
many different computer systems, perhaps with duplication of data to allow
both faster local access and to protect against the destruction of data if one
computer crashes. Some of the Lechmques useful for distributed operation are
covered in Chapter 10.

Security of Data

A DBMS must not only protect against loss of data when crashes occur, as
we just mentioned, but it must prevent unauthorized access. For example,
only users with a certain clearance should have access to the salary field of an
employee file, and the DBMS must be able to associate with the various users
their privileges to see files, fields within files, or other subsets of the data in the
database. Thus, a DBMS must maintain a table telling for each user known to
it, what access privileges the user has for each object. For example, one user
may be allowed to read a file, but not to insert or delete data; another may not
be allowed to see the file at all, while a third may be allowed to read or modify
the file at will.

To provide an adequately rich set of constructs, so that users may see parts
of files without seeing the whole thing, a DBMS often provides a view facility,
that lets us create imaginary objects defined in a precise way from real objects,
e.g., files or (equivalently) relations.

Example 1.4: Suppose we have an EMPLOYEES file with the following fields:
EMPLOYEES(NAME, DEPT, SALARY, ADDRESS) ‘

and we wish most people to have access to the fields other than SALARY,
but not to the SALARY field. In the language SQL, we could define a view
SAFE-EMPS by:

CREATE VIEW SAFE-EMPS BY

SELECT NAME, DEPT, ADDRESS

FROM EMPLOYEES;

That.is, view SAFE-EMPS consists of the NAME, DEPT, and ADDRESS fields
of EMPLOYEES, but not the SALARY field. SAFE-EMPS may be thought of
as a relation described by -~

SAFE-EMPS(NAME, DEPT, ADDRESS)



