PRINCIPLES OF

. DATABASE AND
KNOWLEDGE - BASE
SYSTEMS

VOLUME |

Jeffrey D. Ullman
STANFORD UNIVERSITY




PRINCIPLES OF

DATABASE AND
ANOWLEDGE -BASE
SYSTEMS

VOLUME |

Jeffrey D. Ullman
STANFORD UNIVERSITY

Hllllllliﬂ i

E9361131

COMPUTER SCIENCE PRESS



Cop&right© 1988 Computer Science Press, Inc.
Printed in the United States of America.

All rights reserved. No part of this book may be reproduced in any form
including photostat, microfilm, and xerography, and not in information storage
and retrieval systems, without permission in writing from the publisher, except
by a reviewer who may quote brief passages in a review or as provided in the
Copyright Act of 1976.

Computer Science Press
1803 Research Boulevard
Rockville, Maryland 20850

Library of Congress Cataloging-in-Publication Data

Ullman, Jeffrey-D., 1942-
Principles of database and knowledgebase systems.

(Principles of computer science series, ISSN (888-2096 ; 14- )

Bibliography: p.

Includes index.

1. Data base management. 2. Expert systems (Computer science) I. -Title.
I1. Series. Principles of computer science serics; 14, etc.
QA76.9.D3U443 1988 005.74 87-38197
ISBN 0-7167-8158-1

34567890 RRD 99876543210



PRINCIPLES OF COMPUTER SCIENCE SERIES

ISSN 0888-2096

Series Editors
Alfred V. Ahe, Bell Telephone Laboratories, Murray Hill, New Jersey
J_effrey D. Ullman, Stanford University, Stanford, California

1.

~ 2

14.

Algorithms for Graphics and Image Processing*
Theo Pavlidis "

Algorithmic Studies in Mass Storage Systems*
C. K. Wong

Theory of Relational Databases*

Jeffrey D. Ullman

Computational Aspects of VLSI*

Jeffrey D. Ullman

Advanced C: Food for the Educated Palate*
Narain Gehani

C: An Advanced Introduction*

Narain Gehani

C for Personal Computers: IBM PC, AT&T PC 6300, and Compatibles*
Narain Gahani

. Principles of Computer Design*

Leonard R. Marino

The Theory of Database Concurrency Control*
Christos Papadimitriou

Computer Organization™*

Michael Andrews

. Elements of Artificial Intelligence Using LISP

Steven Tanimoto

. Trends in Theoretical Computer Science

Egon Borger, Editor

. An Introduction to Solid Modeling

Martti Mantyla
Principles of Database and Knowledge Base Svstems, Volume |
Jeffrey D. Ullman

*These previously-published books are in the Principles of Computer Science Series but they are not
. numbered within the volume itself. All future volumes in the Principles of Computer Science Series
! will be numbered.

OTHER BOOKS OF INTEREST

Jewels of Formal Language Theory
. Arto Salomaa

Principles of Database Systems
Jeffrey D. Ullman

Fuzzy Sets, Natural Language Computations, and Risk Analysis

~ - Kurt J. Schmucker

LISP: An Interactive Approach
Stuart C. Shapiro



PREFACE

This book is the first of a two-volume set that is intended as a replacement
for my earlier book Principles of Database Systems (Ullman [1982] in the refer
ences). Since the latter book was written, it became clear that what I though
of as “database systems” formed but one (important) point in a spectrum c
systems that share a capability to manage large amounts of data efficient];

but differ in the expressiveness of the languages used to access that data. i

has become fashionable to refer to the statements of these more expressive lan-
guages as “knowledge,” a term I abhor but find myself incapable of avoiding
Thus, in the new book I tried to integrate_“classical” database concepts with
the technolgy that is just now being developed to support applications wher:
“knowledge” is required along with “data.” »

The first volume is devoted primarily to classical database sysiems. How
ever, knowledge, as represented by logical rules, is covered extensively in Chap
ter 3. From that chapter, only the material on relational calculus, a “classical’
database topic, is used extensively in this volume. We shall return to the top.c
of logic as a user interfade language in the second voluine, where it is one ¢
the major themes. We also find in the first volume a discussion of “object
oriented” database systems, which, along with “knowledge-base systerms.” is an.
important modern development.

Chapter 1 introduces the terminology for database, object-base, anc
knowledge-base systems; it attempts to explain the relationships among these
systems, and how they fit into an unfolding development of progresssively nore
powerful systems. Chapters 2 and 3 mntroduce us to data models as used in
these three classes of systems; “data models” are the mathematical absirac-
tions we use to represent the real world by data and knowledge. In Chapter
4 we meet several important query languages that are based on the relational
data model, and in Chapter 5 we meet languages that are based on one of
several “object-oriented” models.

Chapter 6 covers physical organization of data and the tricks that are
used to answer, efficiently, queries posed in the languages of Chapters 4 and
5. Then, in Chapter 7 we discuss some of the theory for relational database
systems, especially how one represents data in that model in ways that avoid
redundancy and other problems. Chapter 8 covers security and integrity aspects
of database systems, and-in Chapter 9 we discuss concurrency control, the
techniques that make it possible for many processes to operate on one database

v



vi PREFACE

simultaneously, without producing paradoxical results. Finally, in Chapter 10.
we consider techniques for dealing with distributed database systems.

It is expected that the second volume will cover query optimization tech-
niques, both for “classical” database systems (chiefly relational systems) and
for the new class of “knowledge-base” systems that are presently under devel-
opment, and which will rely heavily on the optimization of queries expressed
in logical terms. We shall also find a discussion of some of these experimental
systems. Finally, Volume II will cover “universal relation” systems, a body of
techniques developed to make sense of queries that are expressed in natural
language, or in a language sufficiently informal that the querier does not have
to know about the structure of the database.

Mapping the. Old Book to the New

Readers familiar with Ullman [1982] will find most of that material in this vol-
ume. Only the chapters on optimization and on universal relations are deferred
to Volume II, and a few sections of the old book have been excised. The mate-
rial in the old Chapter 1 has been divided between the new Chapters 1 and 2.
Sections 1.1 and 1.2 remain in Chapter 1, while Sections 1.3 and 1.4 form the
core of Chapter 2 (data models) in the new book. Chapter 2 of the old (phys-
ical organization) now appears in Chapter 6, along with material on physical
organization that formerly appeared in Sections 3.2, 4.2, and 5.1. Some of the
material in the old Section 2.8 (partial-match queries) has been excised.

The remainders of Chapters 3 and 4 (network and hierarchical languages)
appear in the new Chapter 5 (object-oriented langauges), along with new ma-
terial on OPAL, which is a true, modern object-oriented language for database
systems. The old Chapter 5, on the relational model, has been dispersed. Sec-
tion 5.1, on physical structures, moves to Chapter 6, Section 5.2, on relational
algebra, moves to Chapter 2 (data models), while Section 5.3, on relational
calculus, moves to Chapter 3 (logic and knowledge) The old Chapter 6 (rela-
tional languages) becomes the new Chapter 4. The discussion of the language
SQUARE has been omitted, but the language SQL is covered much more exten-
sively, including an example of how SQL can be interfaced with a host language,
C in particular.

Only Chapter 7 (relational theory) remains where it was and remains rela-
tively unchanged. A discussion of the Tsou-Fischer algorithm for constructing
Boyce-Codd normal form schemes is included, as well as a pragmatic discus-
sion of the virtues and dangers of decomposition or “normalization.” Chapters
8 (query optimization) and 9 (universal relation systems) are deferred to the
second volume. Chapter 10 (security and integrity) becomes Chapter 8. Th€1
discussion on statistical databases is excised, but more examples, drawn from
SQL and OPAL, are included. Chapter 11 (concurrency) becomes Chapter 9,
and is expanded in several ways. Chapter 12 (distributed systems) is divide



PREFACE vii

in two. The first half, on query optimization for distributed systems, is moved
to Volume II, while the second half forms the core of the new Chapter 10; the
latter includes not only distributed locking, but also covers other issues such as
distributed agreement (“distributed commit”).

Exercises

Each chapter, except the first, includes an extensive set of exercises, both to
test the basic concepts of the chapter and in many cases to extend these ideas.
The most difficult exercises are marked with a double star, while exercises of
intermediate difficulty have a single star.

Acknowledgements 4

The following people made comments useful in the preparation of this volume:
David Beech, Bernhard Convent, Jim Cutler, Wiebren de Jonge, Michael Fine,
William Harvey, Anil Hirani, Arthur Keller, Michael Kifer, Hans Kraamer,
Vladimir Lifschitz, Alberto Mendelzon, Jaime Montemayor, Inderpal Mumick,
Mike Nasdos, Jeff Naughton, Meral Ozsoyoglu, Domenico Sacca, Shuky Sagiv,
Yatin Saraiya, Bruce Schuchardt, Mary Shaw, Avi Silberschatz, Leon Sterling,
Rodney Topor, Allen Van Gelder, Moshe Vardi, and Elizabeth Wolf.

Alberto Mendelzon, Jeff Naughton, and Shuky Sagiv also served as the
publisher’s referees. My son Peter Ullman developed some of the TgX macros
used in the preparation of this manuscript. The writing of this book was fa-
cilitated by computing equipment contributed to Stanford University by ATT
Foundation and by IBM Corp.

Corrections to the first printing were provided by: Francisco Carrasco, .
Chen-Lieh Huang, Elie Kanaan, Dorothee Koch, Byung-Suk Lee, Mike Migliore,
Inderpal Mumick, Geoff Phipps, and Yumi Tsugi.

Old Debts

The two editions of Ullman [1982] acknowleged many people who contributed: -
to that book, and many of these suggestions influenced the present book. I
thank in this regard: Al Aho, Brenda Baker, Dan Blosser, Martin Brooks,
Peter deJong, Ron Fagin, Mary Feay, Shel Finkelstein, Vassos Hadzilacos, Kevin
Karplus, Zvi Kedem, Arthur Keller, Hank Korth, Keith Lantz, Dave Maier, Dan
Newman, Mohammed Olumi, Shuky Sagiv, Charles Shub, Joe Skudlarek, and
Joseph Spinden. ‘

Gerree Pecht, at Princeton, typed the first edition of the old book; vestiges
of her original troff can be found in the TEX source of this volume. Luis Trabb-
Pardo assisted me in translation of Ullman [1982] from troff to TEX.

J.D.U.
Stanford CA



TABLE OF CONTENTS

Chapter 1: Databases, Object Bases, and Knowledge Bases 1
1.1: The Capabilities of a DBMS 2
1.2: Basic Database System Terminology 7
1.3: Database Languages 12
1.4: Modern Database System Applications 18
1.5: Object-base Systems 21
1.6: Knowledge-base Systems 23
1.7: History and Perspective 28
Bibliographic Notes 29

Chapter 2: Data Models for Database Systems 32
2.1: Data Models 32
2.2: The Entity-relationship Model 34
2.3: The Relational Data Model 43
2.4: Operations in the Relational Data Model 53
2.5: The Network Data Model 65
2.6: The Hierarchical Data Model 72
2.7: An Object-Oriented Model 82
Exercises 87
Bibliographic Notes 94

Chapter 3: Logic as a Data Model 96
3.1: The Meaning of Logical Rules 96
3.2: The Datalog Data Model 100
3.3: Evaluating Nonrecursive Rules 106
3.4: Computing the Meaning of Recursive Rules 115
3.5: Incremental Evaluation of Least Fixed Points 124
3.6: Negations in Rule Bodies- 128
3.7: Relational Algebra and Logic 139
3.8: Relational Calculus 145
3.9: Tuple Relational Calculus 156
3.10: The Closed World Assumption 161
Exercises 164
Bibliographic Notes 171

viii



TABLE OF CONTENTS

Chapter
4.1:
4.2:
4.3:
4.4:
4.5:
4.6:
4.7:
4.8:

Chapter
5.1z
5.2:
5.3:
5.4:
5.5:
5.6:
5.7:

Chapter
6.1:
6.2:
6.3:
6.4:
6.5:
6.6:
6.7:
6.8:
6.9:

6.10:
6.11:
6.12:
6.13:
6.14:

4: Relational Query Languages 174
General Remarks Regarding Query Languages =174
ISBL: A “Pure” Relational Algebra Language 177
QUEL: A Tuple Relational Calculus Language 185
Query-by-Example: A DRC Language 195
Data Definition in QBE 207
The Query Language SQL 210
Data Definition in SQL 223 )
Embedding SQL in a Host Language 227
Exercises 235
Bibliographic Notes 238

5: Object-Oriented Database Languages 240
The DBTG Data Definition Language 240
The DBTG Query Language 246
The DBTG Database Modification Commands 258
Data Definition in IMS 262
A Hierarchical Data Manipulation Language 264
Data Definition in OPAL 271
Data Manipulation in OPAL 278

Exercises 288

Bibliographic Notes 292

6: Physical Data Organization 294
The Physical Data Model 295
The Heap Organization 304
Hashed Files 306
Indexed Files 310
B-trees 321
Files with a Dense Index 328
Nested Record Structures 330
Secondary Indices 339
Data Structures in DBTG Databases 342
Data Structures for Hierarchies 346
Data Structures for Relations 351
Range Queries and Partial-match Queries 354
Partitioned Hash Functions 358 ; »
A Search Tree Structure 361
Exercises 368
Bibliographic Notes 374



X TABLE OF CONTENTS

Chapter 7: Design Theory for Relational Databases 376
7.1: What Constitutes a Bad Database Design? 377
7.2: Functional Dependencies 379
7.3: Reasoning About Functional Dependencies 382
7.4: Lossless-Join Decomposition 392
7.5: Decompositions That Preserve Dependencies 398

* 7.6: Normal Forms for Relation Schemes 401
7.7: Lossless-Join Decomposition Into BCNF 403
7.8: Dependency-preserving 3NF Decompositions 409
7.9: Multivalued Dependencies 413
7.10: Fourth Normal Form 420
7.11: Generalized Dependencies 423
Exercises 435
Bibliographic Notes 441

Chu

1

pter 8: Protecting the Database Against Misuse 446
8.1: Integrity 447 '

8.2: Integrity Constraints in Query-by-Example 452
8.3: Security 456

8.4: Security in Query-by-Example 458

8.5: Security in SGL/RT 460

8.6: Security in OPAL/GEMSTONE 462

sises 464

liographic Notes 466

Chapter 8 Transaction Manageiment = 467
Basic Concepts 468
1.2: A Simple Transaction Model 477
9.3: The Two-phase Locking Protocol 484
9.4: A Mode! with Read- and Write-Locks 486
9.5: Lock Modes 490
9.6: A Read-Only, Write-Only Model 492
9.7: Concurrency for Hierarchically Structured Items 502
9.8: Handling Transaction Failures 508
9.9: Aggressive and Conservative Protocols 511
9.10: Recovery From Crashes 516
9.11: Timestamp-based Concurrency Control 524
Exercises 535
Bibliographic Notes 540




TABLE OF CONTENTS

Chapter 10: Distributed Database Management 543
10.1: Distributed Databases 543
10.2: Distributed Locking 546
10.3: Distributed Two-phase Locking 555
10.4: Distributed Commitment 557
10.5: A Nonblocking Commit Protocol 564
10.6: Timestamp-based, Distributed Concurrency 573
10.7: Recovery of Nodes 575
10.8: Distributed Deadlocks 576
Exercises 582
Bibliographic Notes 585

Bibliography 588

Index 616



CHAPTER 1

Databases,
Object Bases,
and

Knowledge Bases

A database management system (DBMS) is an important type of programming
system, used today on the biggest and the smallest computers. As for other
major forms of system software, such as compilers and operating systems, a well-
understood set of principles for database management systems has developed
over the years, and these concepts are useful both for understanding how to
use these systems effectively and for designing and implementing DBMS’s. In
this book we shall study the key ideas that make database management systems
possible. The first three sections of this chapter introduce the basic terminology
and viewpoints needed for the understanding of database systems.

In Section 1.4, we discuss some of the newer applications for which the
classical form of database management system does not appear to be adequate.
Then, we discuss two classes of enhanced DBMS’s that are of rising impor-
tance. In Section 1.5 we mention “object-base” systems and discuss how they
solve the problems posed by the new applications. Section 1.6 introduces us to
“knowledge systems,” which are generally systems implementing logic, in one
or another form, as a programming language. A “knowledge-base management
system” (KBMS) is then a programming system that has the capabilities of
both a DBMS and a knowledge system. In essence, the highly touted “Fifth
Generation” project’s goal is to implement a KBMS and the hardware on which
it can run efficiently. The relationships among these different kinds of systems
are summarized in Section 1.7.

The reader may find some of the material in this chapter difficult to follow
at first. All important concepts found in Chapter 1 will be covered in greater
detail in later chapters, so it is appropriate to skim the material found here at
a first reading. '



2 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

1.1 THE CAPABILITIES OF A DBMS

There are two qualities that distinguish database management systems from,
other sorts of programming systems.

1. The ability to manage persistent data, and
2. The ability to access large amounts of data efficiently.

Point (1) merely states that there is a database which exists permanently; the
contents of this database is the data that a DBMS accesses and manages. Point
(2) distinguishes a DBMS from a file system, which also manages persistent
data, but does not generally help provide fast access to arbitrary portions of
the data. A DBMS’s capabilities are needed most when the amount of data is
very large, because for small amounts of data, simple access techniques, such as
linear scans of the data, are usually adequate. We shall discuss this aspect of a
DBMS briefly in the present section; in Chapter. 6 the-issue of access efficiency
is studied in detail.

While we regard the above two properties of a DBMS as fundamental,
there are a number of other capabilities that are almost universally found in
commercial DBMS’s. These are:

a) Support for at least one data model, or mathematical abstraction through
which the user can view the data.

b) Support for certain high-level languages that allow the user to define the
structure of data, access data, and manipulate data.

c) Transaction management, the capability to provide correct, concurrent ac-
cess to the database by many users at once.

d) Access control, the ability to limit access to data by unauthorized users,
and the ability to check the validity of data:

e) Resiliency, the ability to recover from system failures without losing data.

Data Models

Each DBMS provides at least one abstract model of data that allows the user
to see information not as raw bits, but in more understandable terms. In fact,
it is usually possible to see data at several levels of abstraction, as discussed in
Section 1.2. At a relatively low level, a DBMS commonly allows us to visualize
data as composed of files.

Example 1.1: A corporation would normally keep a file concerning its em-
ployees, and the record for an employee might have fields for his first name,
last name, employee ID number, salary, home address, and probably dozens of
other pieces of information. For our simple example, let us suppose we keep in
the record only the employee’s name and the manager of the employee. The
record structure would look like:



1.1 THE CAPABILITIES OF A DBMS 3

record
name: char([30];
manager: char[30];
end

The file itself is a sequence of records, one for each employee of the company.
O :

In many of the data models we shall discuss, a file of records is abstracted
to what is often called a relation, which might be described by

EMPLOYEES(NAME, MANAGER)

He::, EMPLOYEES is the name of the relation, corresponding to the file men-
tioned in Example 1.1. NAME and MANAGER are field names; fields are often
called attributes, when relations are being talked about.

While we shall, in this informal introductory chapter, sometimes use “file”
and “relation” as synonyms, the reader should be alert to the fact that they
are different concepts and are used quite differently when we get to the details
of database systems. A relation is an abstraction of a file, where the data type
of fields is generally of little concern, and where order among records is not
specified. Records in a relation are called tuples. Thus, a file is a list of records,
but a relation is a set of tuples.

Efficient File Access

The ability to store a file is not remarkable; the file system associated with
any operating system does that. The capability of a DBMS is seen when we
access the data of a file. For example, suppose we wish to find the manager
of employee “Clark Kent.” If the company has thousands of employees, it is
very expensive to search the entire file to find the one with NAME = “Clark
Kent”. A DBMS helps us to set up “index files,” or “indices,” that allow us
to access the record for “Clark Kent” in essentially one stroke, no matter how
“large the file is. Likewise, insertion of new records or deletion of old ones can
be accomplished in time that is small and essentially constant, independent of
the file’s length. An example of an appropriate index structure that may be
. familiar to the reader is a hash table with NAME as the key. This and other
" index structures are discussed in Chapter 6.

Another thing a DBMS helps us do is navigate among files, that is, to

combine values in two or more files to obtain the information we want. The
next example illustrates navigation. '
Example 1.2: Suppose we stored in an employee’s record the department for
“which he works, but not his manager. In another file, called DEPARTMENTS,
we have records that associate a department’s name with its manager. In the
style of relations, we have:



4 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

EMPLOYEES(NAME, DEPT)
DEPARTMENTS(DEPT, MANAGER)

Now, if we want to find Clark Kent’s manager, we need to navigate from
EMPLOYEES to DEPARTMENTS, using the equality of the DEPT field in
both files. That is, we first find the record in the EMPLOYEES file that has
NAME = “Clark Kent”, and from that record we get the DEPT value, which we
all know is “News”. Then, we look into the DEPARTMENTS file for the record
having DEPT = “News”, and there we find MANAGER = “Perry White”. If
we set up the right indices, we can perform each of these accesses in some small,
constant amount of time, independent of the lengths of the files. [J

Query Languages

To make access to files easier, a DBMS provides a query language, or data
manipulation language, to express operations on files. Query languages differ in
the level of detail they require of the user, with systems based on the relational
data model generally requiring less detail than languages based on other models.

Example 1.3: The query discussed in Example 1.2, “find the manager of Clark
Kent,” could be written in the language SQL, which is based on the relational
model of data, as shown in Figure 1.1. The language SQL will be taught begin-
ning in Section 4.6. For the moment, let us note that line (1) tells the DBMS
to print the manager as an answer, line (2) says to look at the EMPLOYEES
and DEPARTMENTS relations, (3) says the employee’s name is “Clark Kent,”
and the last line says that the manager is connected to the employee by being
associated (in the DEPARTMENTS relation) with the same department that
the employee is associated with (in the EMPLOYEES relation).

(1) SELECT MANAGER

(2) FROM EMPLOYEES, DEPARTMENTS '
(3) WHERE EMPLOYEES.NAME = 'Clark Kent' ’

(4) AND EMPLOYEES.DEPT = DEPARTMENTS.DEPT;

Figure 1.1 Example SQL query.

In Figure 1.2 we see the same query written in the siinplified version of the
network-model query language DML that we discuss in Chapter 5. For a rough
description of what these DML statements mean, lines (1) and (2) together tell
the DBMS to find the record for Clark Kent in the EMPLOYEES file. Line
(3) uses an implied “set” structure EMP-DEPT that connects employees to
their departments, to find the department that “owns” the employee (“set™
and “owns” are technical terms of DML’s data model), i.e., the department



1.1 THE CAPABILITIES OF A DBMS ' 5

to which the employee belongs. Line (4) exploits the assumption that there is
another set structure DEPT-MGR, relating departments to their managers. On
line (5) we find and print the first manager listed for Clark Kent’s department,
and technically, we would have to search for additional managers for the same
department, steps which we omit in Figure 1.2. Note that the print operation
on line (5) is not part of the query language, but part of the surrounding “host
language,” which is an ordinary programming language.

The reader should notice that navigation among files is made far more ex-
plicit in DML than in SQL, so extra effort is required of the DML programmer.
The difference is not just the extra line of code in Figure 1.2 compared with
Figure 1.1; rather it is that Figure 1.2 states how we are to get from one record
to the next, while Figure 1.1 says only how the answer relates to the data. This
“declarativeness” of SQL and other languages based on the relational model
is an important reason why systems based on that model are becoming pro-
gressively more popular. We shall have more to say about declarativeness in
Section 1.4. [J

(1) EMPLOYEES.NAME := "Clark Kent"

(2) FIND EMPLOYEES RECORD BY CALC-KEY

(3) FIND OWNER OF CURRENT EMP-DEPT SET

(4) FIND FIRST MANAGER RECORD IN CURRENT DEPT-MGR SET
(5) print MANAGER.NAME

Figure 1.2 Example query written in DML.

Transaction Management

Another important capability of a DBMS is the ability to manage simultane-
ously large numbers of transactions, which are procedures operating on the
database. Some databases are so large that they can only be useful if they
are operated upon simultaneously by many computers; often these computers
are dispersed around the country or the world. The database systems used by
banks, accessed almost instantaneously by hundreds or thousands of automated
teller machines, as well as by an equal or greater number of employees in the
bank branches, is typical of this sort of database. An airline reservation system
is another geod example.

Sometimes, two accesses do net interfere with each other. For example,
any number of transactions can be reading your bank balance at the same
time, without any inconsistency. But if you are in the bank depositing your
salary check at the exact instant your spouse is extracting money from an
automatic teller, the result of the two transactions occurring simultaneously



6 DATABASES, OBJECT BASES, AND KNOWLEDGE BASES

and without coordination is unpredictable. Thus, transactions that modify a
data item must “lock out” other transactions trying to read or write that item
“at the same time. A DBMS must therefore provide some form of concurrency
control to prevent uncoordinated access to the same data item by more than
_one transaction. Options and techniques for concurrency control are discussed
in Chapter 9.

Even more complex problems occur when the database is distributed over
many different computer systems, perhaps with duplication of data to allow
both faster local access and to protect against the destruction of data if one
computer crashes. Some of the Lechmques useful for distributed operation are
covered in Chapter 10.

Security of Data

A DBMS must not only protect against loss of data when crashes occur, as
we just mentioned, but it must prevent unauthorized access. For example,
only users with a certain clearance should have access to the salary field of an
employee file, and the DBMS must be able to associate with the various users
their privileges to see files, fields within files, or other subsets of the data in the
database. Thus, a DBMS must maintain a table telling for each user known to
it, what access privileges the user has for each object. For example, one user
may be allowed to read a file, but not to insert or delete data; another may not
be allowed to see the file at all, while a third may be allowed to read or modify
the file at will.

To provide an adequately rich set of constructs, so that users may see parts
of files without seeing the whole thing, a DBMS often provides a view facility,
that lets us create imaginary objects defined in a precise way from real objects,
e.g., files or (equivalently) relations.

Example 1.4: Suppose we have an EMPLOYEES file with the following fields:
EMPLOYEES(NAME, DEPT, SALARY, ADDRESS) ‘

and we wish most people to have access to the fields other than SALARY,
but not to the SALARY field. In the language SQL, we could define a view
SAFE-EMPS by:

CREATE VIEW SAFE-EMPS BY

SELECT NAME, DEPT, ADDRESS

FROM EMPLOYEES;

That.is, view SAFE-EMPS consists of the NAME, DEPT, and ADDRESS fields
of EMPLOYEES, but not the SALARY field. SAFE-EMPS may be thought of
as a relation described by -~

SAFE-EMPS(NAME, DEPT, ADDRESS)



