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Summary, some motivation and acknowledgments

i

The aim of this lecture note is to study germs of C°° diffeomorphisms

in ﬂ?z from a topological and a d” point of view (C°° means smooth or

infinitely differentiable). Although our methods could also be used

for a c* study we do not pay attention to this here. We especially

emphasize the following problems :

1. When can such a germ or a power of it be c’ or & embedded in the
germ of a flow ?

2. When are such germs £ determined by their « -jet ?

3. When are such germs £ determined by some finite jet ?

We restrict our attention to the germs occuring in generic n-parameter

families of diffeomorphisms and having a characteristic line.

The possibility of embedding a diffeomorphism in a flow in a C° or C°°

way (i.e. to show that the diffeomorphism is c’- or dw—conjugated to

the time 1 mapping of the flow of a vector field) has at least a twofold

advantage.

Firstly the study of the diffeomorphism is reduced to the study of a

vector field which in most cases reveals to be an easier task.

Secondly up to a homeomorphism the orbits of the vector field are kept

invariant under the diffeomorphism, so that we find an invariant singular

foliation (C° or Cx] restricting the topological complexity of the diffeo-

morphism in essehtially the same way as a first integral does.

A perhaps more important aspect can be seen in the study of periodic

solutions for periodic time-dependent differential equations.



In this context we would like to refer to the Floquet-Liapunov theory
for a linear periodic system of differential equations stating among
other things that the system can be transformed into an autonomous linear
system by means of a coordinate change given by a periodic matrix func-
tion.

Let us now take X to be a more general T-periodic system of differential
equations on R" which we want to study in the neighbourhood of some
T-periodic solution y. As usual we associate to X aﬁ autonomous system
of differential equations or vector field Y = X + gz-defined on

2" -r" « R,

Because of the T-periodicity of X we can consider Y to be a vector field
in B?n x S where S = BQ/TZ. For simplicity in exposition let us suppose
that y is she zero solution, i.e. ¥ = {0}x S.

We take f : R"™ x {0} to be the first return mapping (Poincaré mapping)
associated to Y, which in this case is x *’YX(X.T] where Yy denotes the
global solution of X.

In analogy with the Floquet-Liapunov theory we can state that f c’-embeds
in a flow if and only if there exists a B diffeomorphism H : }?n X S
(x5>5) *‘[Ht[x],t) with the property that this coordinate change H trans-
forms the vector field Y into an expression Z + 5% with Z autonomous.

In that way the study of the diffeomorphism or the study of a system of
differential equations to which can be associated a diffeomorphism (in

casu the Poincaré mapping) is then reduced to a further investigation

of an autonomous vector field in a space of the same dimension.



In this lecture note we deal with germs of diffeomorphisms f in the

plane satisfying a so called tojasiewicz inequality, exhibiting a
characteristic line and having a 1-jet which can be expressed as

R+N with N nilpotent and RP = I for some HiSuIN

For exact definitions we refer to the first chapter. Roughly spoken

the first condition means that the diffeomorphism is not too degenerate,
although the condition is rather weak since all germs of diffeomorphisms
showing up in generic n-parameter-families of diffeomorphisms, for
whatsoever n, are of tojasiewicz-type. The second condition is one of
good sense; as a matter of fact in the other case the orbits indefinitely
spiral around the fixed point and the study of this phenomenum is already
fairly complicated and not completely understood in the vector field
case.

The third condition means that we do not pay attention, except in the
introductory remarks in chapter I, to the already well known diffeo-
morphisms like the hyperbolic and partially hyperbolic ones, as well as
to diffeomorphisms whose associated R (semi simple part of the 1-jet) is

an irrational rotation.

In all the cases treated here we find for the diffeomorphism a same

kind of decomposition in parabolic, elliptic and hyperbolic sectors as
for an R-equivariant vector field X. This X has the property that up to
a C°° change of coordinates the - jet of f is the same as the < - jet of
R°X1 where X1 is the time 1-mapping of the flow Xt of X. Moreover the

union of the boundaries of these sectors is a C image of the union of

the boundaries for the X-decomposition.



Let us remark that in case R = Identity these sectors for f are
"invariant” sectors while for general R we have for each sector S

that f leaves "invariant"igb fi(SJ with fp(S]" =Sy

Knowing that in the tojasiewicz type-case vector fields only have

but one topological model of attracting, expanding, hyperbolic and
elliptic sector (up to C° conjugacy) we in this work prove the same
for the diffeomorphism (take the case R = Id), except for the hyper-
bolic sector.

We however show that in the interior of a hyperbolic sector orbits only
stay a finite number of iterates. We use all this to prove that the
diffeomorphism f (case R = Id) is weakly—Co-conjugated to the time 1-
mapping X1. Such f as we deal with is hence weakly—Co—embeddable in a
flow and is up to weak—Co—conjugacy determined by some finite jet.
These results can be ameliorated if we do not allow certain partially
hyperbolic singularities in a desingularisation of X obtained after
successive blowing up.

Then as a matter of fact we find that f is Cw—conjugated to X1 on the
union of parabolic and hyperbolic sectors.

Hence under the just mentioned extra assumption (which we only need

inside the hyperbolic sectors) f is Cc—conjugated to X, ‘and;is up:to

9
Co-conjugacy determined by some finite jet.

The elliptic sectors give 6N problems, even under these extra conditions
on the desingularisation. Under these extra conditions we are able to
describe a complete (infinite dimensional) dw modulus for flat dm cofl-

0
jugacy (conjugacy by means of C diffeomorphisms which are infinitely

near the identity).

i
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The reason essentially is that a flat C°° conjugacy between two elliptic
sectors is uniquely determined in a conic neighbourhood of each of the
two boundary lines. These uniquely defined diffeomorphisms do not

need to match together in the middle of the sector and this obstruction

can be fully described.

At least for a large class of germs of diffeomorphisms in 3?2 we so prove
that the whole C°° structure only depends on the *« - jet.

In other cases we get that this definitely is not the case. 1In many cases
we show the diffeomorphism to be C° determined by some finite jet so that
the investigation of the topological structure of the diffeomorphism

becomes a problem concerning polynomial vector fields.

In order to make the lecture note accessible for non-specialists we added
an extensive introduction in chapter I.

It contains besides the definition of most notions, a list of well known
facts related to our study and a description of the main technique, namely
the blowing-up method.

Moreover in chapter I we enumerate all our results in a rather self-con-
tained way with a guide for travelling through the proofs; at the end

we present some nice applications.

The rest of this note is then completely devoted to the proof of the

theorems.



Some of the results in this paper have first been announced and proved
in limited cases by Rodrigues*and Roussarie during a stay of the first
at the university of Dijon.

The method of proof has been adapted and completed by Dumortier and
Roussarie during a sejourn of both authors at the "Institut des Hautes
Etudes Scientifiques” in Bures-s-Yvette.

The writing has essentially been finished while Dumortier remained at
the university of Dijon.

We want to thank the mentioned institutions for their hospitality.

* Granted by the CNPq of Brazil
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Chapter I : Introduction, definitions, formal study and statement of

the results

In §1 we introduce the problem, sketch some well known (and sometimes
less known) related results and we situate the problem in its natural

environment.

§2 contains a short description of the blowing up method as well as some
results concerning singularities of vector fields of tojasiewicz type

in ]RZ. We end this paragraph by giving a finite list of types of
singularities to whose study our problem can be reduced by means of

our fundamental theorem. We state this theorem in §3.

In §4 we discuss the decomposition in sectors for a singularity of a
vector field of tojasiewicz type with characteristic orbits and we say

some words about characteristic lines.

In §5 we state the results concerning associated characteristic lines
and decompositions in sectors for diffeomorphisms of tojasiewicz type.

We reduce the statements to our fundamental theorem.

§6 contains the statements and a preliminary elaboration of our princi-

pal C® results, while the same is done in §7 for the C° results.

In §8 we give some applications.



§1. Introduction

Some definitions

We will use following definitions and notations
0
Diff(n) : the space of C germs of diffeomorphisms in t]GIRn having

the origin as a fixed point.

&(n) : the ring of germs of ¢ functions in [JEIRn
v(n) : the space of germs of C* vector fields in 0 e_IRn vanishing
in 0.

The symbol ~ resp. ~ placed above an element of Diff(n), V(n), & (n)

k
means that we consider the ©-jet, resp. the k-jet of that element.

We sometimes also use jk[.][D] or jl.)(0).

The flow of X € V(n) will be denoted by Xt instead of the often used

dx,t'

Definition 1.1

Let 81785 € Diff(pn), we say that g, and g, are Cr—conjugated

(r € {0} U IN U {o9}) if there exist local representatives 51 and Ez
of resp. g4 and g, defined on the resp. neighbourhoods V1 and V2 of
0 and if there exists some e diffeomorphism h : V1-+ V2 such that
h_1 ° éz arhlgys 51(xl VY x e V1 as long as both sides are defined.

[CD diffeomorphism means homeomorphism and Co—conjugacy is also called

topological conjugacy).




Definition 1.2

Let X, Y €V(n), we say that X and Y are C'-conjugated
v
(r € {o}JU IN U {o0}) if there exist local representatives X and v

of resp. X and Y defined on the resp. neighbourhoods V1 and V2 of

0 and if there exists some C" diffeomorphism h : V1'+ V2 such that
=1

v v
oo Yt o h(x) = Xt Yix & V1 and VYt €EIR as long as both sides are

defined (if r €IN U {0} the last condition can be formulated as

v v
: h*(X] =Y).

Definition 1.3

Let g € Diff(n). We say that g C'-embeds in a flow (r € {o} UIN U {eo})

if there exists X € V(n) such that g is Cr~conjugated to X1.

E Definition 1.4

] Let g € Diff(n). We say that g is c’ determined by its k-jet EK
(KEIN U {oo]) if ¥ f € D1ff(n) with #° = g" we have that f is C'-
conjugated to g.

In that case we say that the k-jet EK is determining for CP-ConjUgacy
or Cr—determining. g is called finitely Cr—determined if some finite
jet of g is C'-determining.

Definition 1.5
k

i

Let X €V(n). We say that X is ol determined by its k-jet ;
(k €N U {o}) if V Y € V(n) with Y = X" we have that Y is cT-conju-

gated to X.

In that case we say that the k-jet }k is determining for Cr-conjugacy
or Cr—determining.

X is called finitely C'-determined if some finite jet of X is C'-deter-

mining.
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Situation of the problem and some related results

Let us first recall some well known results concerning the guestions

mentioned in the summary.

i) If g €EDiff(n) is hyperbolic (this means that all the eigenvalues
of jq[g) (0¥ Aferoff the unit circle; thén by the theorem of

Hartman [9] we know that g is topologically determined by its 1-jet

in 0. By the theorem of Sternberg [18] we know that such hyperbolic

g Cuily embeds in a flow if and only if it formally embeds in a flow

while it was already known by Lewis Jr. [ 11] that = or g2 formally

embeds in a flow (and hence Cully].

ii) For semi-hyperbolic diffeomorphisms in Diff(n) with 1 real eigen-
value having modulus 1 and all other eigenvalues with modulus
# 1, we know that such a diffeomorphism always has a c’ center manifold
(for any r €EN) (A center - manifold w® for g is an invariant mani-
fold containing O, such that the spectrum of j1 [glwc)[D] lies on the
unit-circle and W’ has maximal dimension with respect to that propertﬂ.
In the case Diff(2). we can now look at jr[g|w°1t01 for W° being
any c’ center manifold. These jets do not depend on the particular
choice of Cr center manifold (see [22]) and except for a set of
o-codimension (a set which is hence avoidable by genenic C“>m—para—
meter families of diffeomorphisms) we may assume that one of these jets
is different from the identity. In chapter III of this paper we prove
that in that case there must exist(a not necessarily unique) 6” center
manifold. We do not believe this result to be original although we

never found it in the literature.



1"

It is also known ([11] that in that case g or g2 formally embeds in

a flow. In chapter III we obtain that g or g2 Caily embeds in a flow.
Concerning gt results with respect to these and other semi-hyperbolic
points we refer to Takens [20]. On the other hand it is a well known
result that the corresponding vector fields are C° determined by
their r-jet where r is the lowest number such that jr[XIWc](D] #0 ;

the different topological types may be classified by the 5 models :

XX TE S

9 a
+ (x Sty v ) + iy 5— X s X =

iii) In the sequel we will now exclusively consider germs g € Diff(2)
whose 1-jet in O has all its eigenvalues on the unit circle.

By the Jordan normal form theorem we may write j1[g](D] = R+N with R

the semi-simple part and N the nilpotent part. Following theorem of

Takens [23] is crucial for further elaboration in the paper.

Theorem 1.1

T E'G Diff(2) (remember : ~ stands for o°-jet) and R is the semi-simple

toms
i« or + 1 then there is

part of E1 (= j1(§3[01] with eigenvalues e
a unique QIE v invariant under R such that up to a 6N change of
coordinates E'is equal to R o 2} where §¥ denotes the formal flow
associated to ;.

Moreover, ¥ k €IN U {e} the k-jet of X only depends on the k-jet of g.

~ ~
We will call R o X1 the formal normal form of g.
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We see that §1 = R_1N which is always zero except if R = + I in

which case Y1 = + N (or even = N up to a linear change of coordinates).

Definition 1.6
Let g € Diff(2). We say that g is of tojasiewicz type (resp. alge-
braically isolated) if g has a formal normal form R o X1 such that

X is of +ojasiewicz type (resp. is algebraically isolated).

We recall:

g ? byl
X €V(n) is of tojasiewicz type if for some representative X of X
(X a C“>vector field defined on some neighbourhood of 0 with

L X)e) = X) we may find constants k,c,6 inTR, such that

X O >’C||X||k v x with lIxll < & where Il.li denotes the euclidean
norm on Rr".

~ N N —
X € V(n) is algebraically isolated if the ideal in &(n) generated by

the component functions of X contains some power of the maximal ideal.

The condition of being of tojasiewicz-type is less restrictive than
being algebraically isolated.

For more details see [6].

Suppose now that §4 has a semi-simple part R with eigenvalues ejZn;a
and o irrational. Then the ;'in the formal normal form has a 1-jet

;4 = 0, and since ilmust be R-invariant - hence invariant under all

o0
rotations around the origin - we know that up to a C coordinate change

~
X can be written in polar coordinates as

o oo
21. @ 29. @
(iéq a,r ) e + (j§1 bjr I e
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If we suppose g to be of tojasiewicz type then there is some a; or
some bj which is not zero. Moreover up to a set of co-codimension
we even will have an expression

b ot ol =
e b e Lyn, Oy

Zj) réa?

with aio .bjo # 0 for some i, and ¢ €N
In case ‘jo < iO the techniques developed in this paper permit to prove
that g embeds Coo-ly in a flow (this will however not be worked out in
this paper).

In all cases (with some bj # 0) it is well known that g (or g"‘l - depen-

ding on the sign of b

q ) is topologically conjugated to the standard
o

contraction (x,y) - (% X % y).

iv) Finally we come to the case where R" = I for some n €EIN and we
moreover suppose that for the associated normal form the formal

vector field ’)2/ is oftojasiewicz type and has a characteristic orbit.

Definition 1.7 (characteristic orbit)
A vector field X onRR" with X(0)= 0 has a characteristic orbit in O if
for some neighbourhood V of O there exists an integral curve
t - Xt(yol remaining in V for t 20 (resp. t < 0) and such that
= Xt(yDJII >0 VYt =0 (resp. t <0)
- Xt(y ] >0 for t »> o (resp. t - -o0)
0
the function t a it from R ( R) tos" | tend
e function t » "Xt(yoll rom resp. 08§ ends
to a limit when t — +oo (resp. t - -oo)

Let us in this case call y = {X (y )l t€[0,[} U {0}

(resp. y = {Xt[yo)lt € ]-,0]} U {0}) a characteristic line for X.




