


Modern Methods
for
COBOL Programmers

John Pugh

School of Computer Science
Carleton University, Ottawa, Canada

and

Doug Bell

Department of Computer Studies
Sheffield City Polvtechnic. Enaland

Prentice/Hall International

le

<

Englewood Cliffs, New Jersey London New Delhi Rio de Janeiro
Singapore Sydney Tokyo Toronto Wellington



Library of Congress Cataloging in Publication Data

Pugh. John R., 1950-

Modern methods for COBOL programmers.

Includes bibliographies and index.

1. COBOL (computer program language).

I. Bell, Doug H., 1944- . 1L Title.
QA76.73.C25P83 1983 001.64°24 82-22978
ISBN 0-13-595215-8

British Library Cataloguing in Publication Data

Pugh, John R.

Modern methods for COBOL programmers.
1. COBOL (computer programming language).
I. Title. II. Bell, Doug H.

001. 64'24 QA76.73.C25

ISBN 0-13-595215 8

© 1983 by Prentice-Hall International, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior permission of Prentice-Hall
International, Inc.

For permission within the United States contact Prentice-Hall Inc., Englewood
Cliffs, NJ 07632.

ISBN 0-13-5952315 8

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty, Ltd., Sydney
Prentice-Hall Canada. Inc., Toronto

Prentice-Hall of India Private Ltd., New Dehli
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte., Ltd., Singapore
Prentice-Hall Inc., Englewood Cliffs, New Jersey
Prentice-Hall do Brasil Ltda., Rio de Janeiro
Whitehall Books Ltd., Wellington, New Zealand

Printed in the United States of America

10987654321



PREFACE

The last decade has seen the production of software emerge as a major problem for
the data processing industry. Less expensive but more powerful computer hardware
has made feasible projects which would not have been contemplated only a few years
ago. Many of these projects, however, will either not be implemented or be delayed
due to the spiralling costs both of maintaining current software and of developing
new software. Missed deadlines, cost overruns, shortages of qualified personnel, and
badly designed systems are familiar problems in what has come to be termed the
‘software crisis’.

The need for new tools and techniques in software development has been
apparent for some years. Many organizations, groups and individual researchers
have attacked the software problem, resulting in an overwhelming number of
improved programming practices being suggested. Many of these practices are no
longer in their infancy, they have been tried and tested on major projects from a wide
variety of application areas. Some have proved very successful; but despite the
demonstrated benefits of these new programming ideas they are still generally
unknown or misunderstood.

This textbook is aimed at the practicing business application programmer. It
discusses proven programming tools and techniques and shows how they can be
applied to the development of commercial data processing systems. An objective is
to present this material from the viewpoint of the applications programmer wishing
to upgrade his or her knowledge of modern programming practices, although the text
will also be of interest to systems analysts and managers. COBOL is used throughout
this text as it remains the most extensively used business application programming
language.

This book is not an introduction to programming in COBOL.: it is aimed
primarily at readers who have a working knowledge of COBOL but who may not
have a thorough grounding in the fundamentals of program design. It is only in recent
years that educational institutions have begun to emphasize thisimportant topic. The
text is also suitable for a second-level undergraduate course which provides an
introduction to business data processing using COBOL. These students should be
fluent in a high level language other than COBOL and have access to a COBOL
language reference manual.

vii



viii PREFACE

Several chapters are devoted to case studies, where solutions to typical data
processing problems are developed using techniques introduced in earlier chapters.
We intentionally do not present nicely packaged textbook solutions. It is important
for the reader to fully understand how and why a particular solution developed and
why other potential solutions were discarded.

Chapter 1 describes the problems involved in developing and maintaining
software and presents an overview of the programming practices followed in dealing
with these problems.

Early chapters concentrate on the development of an organized and disciplined
approach to the difficult task of program design. Chapter 2 introduces the basic
components of a design methodology which is referred to throughout the text as
top-down stepwise refinement. This is closely aligned with, although not restricted
by, the functional decomposition approach to program design. The text may thus be
considered an alternative to texts concentrating on the data structure or data flow
approaches. Chapter 3 applies the methodology to the design of a multi-level report
program. Additional guidelines for successful program design are presented in
Chapter 4 before the design of two classical data processing problems are considered
in Chapters 5 and 6.

Chapter 7 describes a subset of COBOL which may be used to produce clear,
maintainable and reliable COBOL programs. This chapter is chiefly aimed at prog-
rammers with little or no knowledge of COBOL. Chapter 8 describes how COBOL
may be used to implement program designs developed in line with the methodology
presented in earlier chapters. Further guidelines for programming in COBOL are
given in Chapter 9; this chapter also includes the full COBOL texts for the case study
designs developed earlier. The current standard version of COBOL, as adopted by
the American National Standards Institute (ANSI) in 1974, is used throughout the
text.

Chapter 10 describes a top-down approach to the implementation and testing of
program systems. This technique is applied to the development of an on-line update
program in Chapter 11.

The final two chapters deal with practices which are increasingly being intro-
duced by managers to organize and control software projects. Chapter 12 discusses
structured walkthroughs, a method of reviewing the progress of a project at various
stages. Chapter 13 deals with the operation of programmer teams.

Exercises and further reading lists are provided at the end of many of the
chapters. Some of the exercises raise problems which will be discussed later in the
text.

We thank people at Carleton University and Sheffield City Polytechnic for their
help, particularly Linda Guay, Mike Hollingsworth, Linda Latham, Mark Shackle-
ton and Neil Willis. In preparing this book we used the facilities provided by the
computer centers at Carleton University and Sheffield City Polytechnic: we appreci-
ate the help given by people in those centers. Giles Wright of Prentice-Hall is
thanked for his support and encouragement.

The ideas discussed in this book are the result of the efforts of many dedicated
computer professionals and we would like to acknowledge their work.

COBOL is an industry language and is not the property of any company or group of
companies, or of any organzation or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL Programming Language Committee as to the accuracy and functioning
of the programming system and language. Moreover, no responsibility is assumed by
any contributor, or by the committee, in connection therewith.



Preface

CONTENTS

vii

1 INTRODUCTION 1

1.1
1.2

1.3

1.4
1.5

Overview 1

Software Development Problems 2
Complexity 2

Maintenance 3

Management 4

Education 5

Modern Programming Practices 6
Structured programming 6

Design methods and principles 7
Documentation tools 10

Management and organizational tools 11
Organization and Content of the Book 12
References 13

2 STRUCTURED PROGRAM DESIGN 15

Introduction 15

The Top-down Stepwise Refinement Method
Logic Structures 19

Pseudocode 21

Summary 29

References and Further Reading 30

3 THE DESIGN OF A REPORT PROGRAM 31

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

Introduction 31

The Program Specification 32
Initial Thoughts 34

Processing a Sequential File 36
The Program Design 38

An Alternative Design 47
Summary 49

Exercises 50

16

iii



iv CONTENTS

4 GUIDELINES FOR THE DESIGN PROCESS 51

4.1 Introduction 51

4.2 Component Size 52

4.3 Complexity 55

4.4 Searching for Alternative Solutions 56
4.5 Correctness 56

4.6 Ignoring Detail 57

4.7 The Order of Decomposition 57
4.8 Data Hiding 58

4.9 Coupling and Cohesion 59

4.10 Shared Components 61

4.11 Program Performance 62

4.12 Summary 64

4.13 Further Reading 64

5 DESIGN OF A VALIDATE PROGRAM 66

5.1 Introduction 66

5.2 The Program Specification 66
5.3 Initial Thoughts 69

5.4 First Design = 70

5.5 Second Design 73

5.6 . Third Design 76

5.7 Fourth Design 79

5.8 Conclusion 83

5.9 Exercises 84

6 THE DESIGN OF A SEQUENTIAL FILE UPDATE PROGRAM 85

6.1 Introduction 85

6.2 The Program Specification 86

6.3 Sequential Update Fundamentals 90

6.4 An Initial Algorithm 91

6.5 The Initial Algorithm Reviewed 93

6.6 An Improved Algorithm 96

6.7 The Improved Algorithm Reviewed 99
Componeént size and complexity 101
The topology of the structure chart 101
Cohesion and coupling 101

6.8 A Solution to the Telephone Company Problem 103

6.9 Customizing the General Algorithm 107

6.10 Summary 111

6.11 Acknowledgments 111

6.12 References 111

6.13 Exercises 112



CONTENTS

7

MAKING THE MOST OF COBOL 113

7.1 Introduction 113
7.2 Program Layout 114
7.3 Data 114
7.4 Executable Statements 116
7.5 Sequential Input-Output 117
Paragraphs and the Perform Verb 119
Repetition 119
Comparison 120
Calculation 123
0 Formatting Output 124
1 Tables 125
2 Subprograms 126
.13 Summary 127
.14 Further Reading 128
S Exercise 128

»—————M\DM\IO\

STRUCTURED PROGRAMMING IN COBOL

8.1 Introduction 129

8.2 Sequence 130

8.3 Repetition 131

8.4 Selection 131

8.5 Nested If Statements 132

8.6 The Case Statement 137
Alternative 1 138
Alternative 2 139

8.7 The Go To Statement 140

8.8 Program Modules 141

8.9 Summary 142

9 CODING IN COBOL 144

10

9.1 Introduction 144

9.2 Report Program 145

9.3 Validate Program 152

9.4 Sequential File Update Program 161
9.5 Summary 168

9.6 Exercises 168

129

TOP-DOWN IMPLEMENTATION AND TESTING

10.1 Introduction 170

10.2 Traditional Methods 170

10.3 Testing 172

10.4 Top-down Development 173

10.5 An Assessment of the Method 176
10.6 Summary 177

170



vi

11 IMPLEMENTATION OF AN ON-LINE UPDATE

11.1
11.2
11.3
11.4
11.5
11.6
11.7

Introduction 179

The Specification 179

First Thoughts 180

The Program Design 182

The COBOL Code and the Testing 185
Summary 191

Exercise 192

12 STRUCTURED WALKTHROUGHS 193

12.1
12.2

12.3

12.4

12.5
12.6
12.7
12.8

Introduction 193

Organization 194

The scope of walkthroughs 194
Membership 195

Before the walkthrough 196

During the walkthrough 196

After the walkthrough 198
Advantages and Disadvantages 198
Software quality 198

Programmer effort 199

Meeting deadlines 199

Programmer expertise 200
Programmer morale 200
Programmers’ Worries 201
Exposure 201

Programmer appraisal 201

Design and Code Inspections 202
Summary 203

References and Further Reading 204
Exercises 204

179

CONTENTS

13 CHIEF PROGRAMMER TEAMS AND PROJECT SUPPORT
LIBRARIES 205

13.1
13.2
13.3
13.4
13.5
13.6
13.7

Introduction 205

Program Production Library 208
Chief Programmer Team 210
Advantages and Disadvantages 212
Summary 213

References and Further Reading 214
Exercises 214

Index 215



Introduction

1.1 OVERVIEW

The term “Software Crisis” is familiar to everyone involved in data
processing today. In recent years the cost of computing power has plum-
meted dramatically. During the same period the cost of producing software
has continued to rise at such an alarming rate that it is not uncommon for
software costs to account for 75% or more of the costs of a new computer
system. Software costs in the US are now measured in tens of billions of
dollars each year. The rapid advances in hardware technology have signific-
antly increased the scale of projects which are now being tackled and have
tended to nullify any improvements gained from recent developments in
software technology. These are very disturbing trends which unfortunately
seem likely to continue for the foreseeable future.

Though progress has been slow, significant advances have been made in
the development of tools and techniques to improve the process of produc-
ing software. These developments have covered all elements of the Software
Life Cycle but in this text we concentrate on those areas which have most
impact on the practicing business application programmer, namely, software
design, coding and documentation, operation and maintenance, and the
management of software projects. Despite the fact that the techniques
discussed in this text are no longer in their infancy and that many proven
benefits have accrued from their use, they have not been universally adopted
and widespread ignorance and misunderstanding of the methods still exists.

Some confusion is easily understood as in recent years programmers
have been overwhelmed by the sheer volume of literature and “‘jargon”
associated with these improved programming practices. Though certainly

1



2 INTRODUCTION

not familiar with the intimate details of what lies behind some of this
technology, phrases such as structured programming, top-down design,
stepwise refinement, program design language, HIPO charts, chief pro-
grammer teams, program development libraries, structured walkthroughs
and many others will be very familiar to most programmers. Before present-
ing an overview of some of the available tools and techniques, it is important
to discuss and fully appreciate the nature of the problems facing program-
ming professionals today.

1.2 SOFTWARE DEVELOPMENT PROBLEMS

Itis a measure of the depth of the software crisis that we can confidently
predict that every practicing programmer has been involved in the develop-
ment of a software system that has gone awry for one reason or another. It is
probable that the system suffered from a combination of the following
common maladies:

(a) Missed project deadlines, late system delivery

(b) High development costs, budgets exceeded

(c) User dissatisfaction, system performs inadequately or does not meet
user requirements

(d) Error-prone and unreliable, requiring excessive corrective mainte-
nance

(e) Overly-complex, difficult and expensive to perform adaptive mainte-
nance.

Some of the major problems impacting software development are
described in the remainder of this section.

Complexity

The fall in hardware costs and developments in hardware technology
have made feasible increasingly ambitious projects and generated an almost
insatiable demand for complex, sophisticated software. This trend will con-
tinue as we move from isolated stand-alone systems to integrated systems
and as computing makes inroads into hitherto untapped application areas.
The complex and intricate nature of these advanced software systems is
often underestimated by project managers and results in wildly optimistic
cost and time estimates. The design and implementation of these systems is
carried out in an environment where costly time delays must be anticipated.
Software systems evolve over time. Initial requirements specifications are
often vague and incomplete, they need to be modified as the project pro-
ceeds. Additionally, the user may clarify, change, or add functional require-
ments. These modifications are all sources of delay and increased cost.



1.2 SOFTWARE DEVELOPMENT PROBLEMS 3

The design of complex software systems remains a fundamental prob-
lem despite the advances that have been made in software technology. There
is no well-defined recipe which, if followed, guarantees a good design.
Software design is an intellectually challenging and creative human task.
Inventive, experienced designers are priceless assets of any programming
shop. Whilst recognizing the importance of skilled individuals it has become
increasingly evident that designers need helpful tools and techniques if they
are to master the complexity of large scale application systems. When
application systems were such that a small number of individuals might
assume complete responsibility for the design and implementation of a
system, software design tended to be a rather undisciplined process. Little
distinction was made between design and programming. Programmers con-
sidered time spent on design as largely unproductive, believing that design
and detailed coding were the same and could be performed concurrently.
When applied to the design of large scale systems involving teams of pro-
grammers and hundreds of interacting program modules this ad hoc
approach has proved disastrous. There are now, however, numerous useful
tools and techniques which can assist programmers in the battle against
complexity and which, when carefully selected and used in the right combi-
nation, can bring much needed discipline to the software development
process.

Maintenance

Another daunting problem facing data processing installations is that
each new application system put into operation immediately generates its
own maintenance workload. In many installations 60 per cent or more of the
workload is taken up with the maintenance of existing systems. This leaves
fewer resources available for the development of new systems. New staff
must be recruited or new developments delayed. Maintenance may be
broadly classified into two types:

Adaptive maintenance

(a) to meet changes in the application environment, e.g. a change in
taxation regulations

(b) tomeetchangesin the operation environment, e.g. the installation of a
new compiler

(c) to satisfy requests from users for enhancements or modifications to a
system.

Corrective maintenance

(a) toidentify the cause of and correct bugs not discovered during system
testing, i.e. repairing unreliable and non-robust software
(b) to improve a poorly performing system.



4 INTRODUCTION

In many programming installations there has been a tendency to regard
maintenance as a training ground for raw, inexperienced recruits freeing the
more experienced programmers for more attractive, creative development
work on new application systems. Maintenance has been seen as an activity
requiring little skill. In fact, maintenance is a difficult task requiring high
levels of skill, creativity and experience. What makes the task of the main-
tenace programmer so difficult?

The maintenance programmer must be able to quickly understand
what the major functions of a program are and how these functions are
accomplished. This is made more difficult because programs are
poorly documented, poorly organized and the program code reflects the
individual style and favorite programming “‘tricks’ of the original program
author.

Most programs requiring maintenance will already have undergone
numerous modifications. Each modification makes the next one more dif-
ficult. The quality of a program’s documentation, structure and reliability
declines over the life of the program.

Designing a program so that it can be maintained easily is difficult.
Unfortunately, ease of maintenance is often not a major consideration in the
mind of a program designer. Consequently maintenance programmers find
that programs do not accommodate changes easily. Modifications are not
localized, they impact on seemingly unrelated parts of the program and
cannot be implemented without major surgery on the structure of the
program. Rather than carry out this time-consuming restructuring it is
commonplace for the maintenance programmer to succumb to the tempta-
tion to implement the change with a “‘quick and dirty” fix or patch.

Management

The problems that beset software development are divided between
those that are technical in nature and those that are caused by poor man-
agement. When software projects were small and project teams consisted of
only a few people, informal methods of project planning and maintenance
were adequate. For large complex projects, a formal integrated approach to
management is necessary for successful project implementation. Some of
the consequences of ineffective management are listed below:

(a) poor estimating of project schedules leading to missed deadlines and
late system delivery

(b) poor cost estimation and management leading to budget overruns

(c) poor project visibility making it impossible to assess the progress of the
project and identify schedule slippages and trouble spots

(d) ineffective project monitoring leading to a lack of adherence to



1.2 SOFTWARE DEVELOPMENT PROBLEMS 5

installation standards and poor discipline in using software tools and
techniques
(e) poor personnel management and ineffective communication channels.

In this text we concentrate our discussion on how these modern project
management techniques affect the work of the programming practitioner.

Education

The demand for new application systems, fuelled by the fall in hardware
costs, increased hardware capability, and increased user requirements, has
created an acute shortage of skilled personnel. Data processing installations
find themselves caught in a software cost spiral. New application systems are
more complex than existing systems and therefore require more software
development time. Once implemented, new systems are added to the exist-
ing software needing to be maintained. Systems now more rapidly reach the
stage where they become too expensive to maintain and need to be com-
pletely replaced: the consequences of this are that the supply of suitably
trained personnel entering the industry is inadequate to meet the demand,
and that intense competition exists for the skills of the more experienced and
talented professionals. Skilled programmers are able to command good
salaries and change jobs easily.

The problems for those who manage software development projects
have been compounded by the fact that only marginal improvements in
software productivity have been achieved in recent years. Although indi-
vidual programmer productivity varies greatly, rates of fewer than ten lines
of finished code per day are commonplace. There are many factors which
influence productivity but the sheer size and complexity of today’s applica-
tion systems are among the most significant. Most software practitioners
have received little or no training in how to deal with these problems. For
many, their only course in programming will have emphasized mastering the
intricacies of a particular programming language rather than the fundamen-
tals of problem solving, program design and coding techniques. Even fewer
will have received any formal education in such desirable areas as design
methodologies, communication skills, or the ergonomics or human factors
involved in designing computer systems. Prior to entering the workplace it is
unlikely that they will have been involved in the design and implementation
of a large software system or in working within a project team. Fortunately,
today’s computer science graduates are generally far better prepared to
meet the challenges of the data processing industry than their predecessors.
For those overworked practitioners already in the field the acquisition of
modern software skills is a slow and difficult process. Often new ideas are
misunderstood and the implementation of new practices meets with consid-
erable resistance.



6 INTRODUCTION

1.3 MODERN PROGRAMMING PRACTICES

In this section we present an overview of recent major developments in
software technology.

Structured Programming

The first use of the term structured programming can be traced back to
the work of Dijkstra in the mid-1960s. Since then it has become one of those
terms which means all things to all men. Structured programming, as first
enunciated by Dijkstra,! does not lend itself to a rigid precise definition
although many attempts at such definitions exist in the literature.

The major principles of structured programming can be summarized as
follows:

(a) A recognition that programming is a complex, intellectual activity and
that we can no longer rely on idiosyncratic methods of program con-
struction.

(b) The introduction of organization and discipline into the programming
process to master this complexity and attain the goals of correct,
reliable and maintainable programs.

(c) Program design is a distinct activity from coding and should be carried
out in a systematic fashion using the following broad guidelines:

(1) The initial refinement of a problem decomposes it into a number
of highly abstracted subordinate problems. Each of these are
then themselves refined in a similar way into a set of less abs-
tracted problems. This process, known as successive or stepwise
refinement, continues until the problem solution is described at a
level where translation into the required programming language
can be achieved easily. This method of program design is known
as top-down design and results in a hierarchic or tree-structured
solution.

(i) The transition between levels of refinement is kept as small as
possible in order that each step can be understood easily and the
correctness of the solution at each level can be informally veri-
tied.

(iii) During program design and coding only three basic control struc-
tures, sequence, selection, and repetition are generally neces-
sary.

Although they leave many practical implementation issues unanswered
these principles capture the spirit of the early pioneers of structured pro-
gramming.

The advent of structured programming was the cause of widespread
controversy amongst the programming community. Much of the controversy



1.3 MODERN PROGRAMMING PRACTICES 7

was the result of grossly oversimplifying the ideas being put forward and
misunderstanding their true objectives. Two of the more common miscon-
ceptions are discussed below.

A widespread misconception was that structured programming could
be equated to programming using only a restricted set of control structures
and avoiding, at all costs, the use of the unconditional branch or go to
statement. This narrow view of structured programming generated a heated
debate as to whether the go to statement should be banished from high level
programming languages and deflected attention from the main issue of how
to design programs systematically.

Other programmers equated structured programming with modular
programming. This technique arose as an alternative to the early common
method of designing and coding programs in a monolithic fashion. Broadly
stated, modular programming is the partitioning of a program into function-
ally independent modules. Provided the interface between modules is well
defined, each module can be designed, coded, and tested independently,
perhaps by different programmers. Few programmers argued with these
ideas and saw structured programming as simply a restatement of the princi-
ples of modular programming. Today, modular programming is seen as a
valuable component, but only a component, of structured programming. It
lacks the discipline of structured programming in a number of areas, notably
on how design is to be carried out within individual modules.

Structured programming inspired a resurgence of interest in the pro-
gramming process. This has led to the development of a wide range of tools
and techniques which have enabled the principles of structured program-
ming to be put into practice in the workplace. In particular, guidelines have
been proposed for the implementation of structured programs in COBOL,
still by far the most predominantly used programming language for data
processing applications. Also, a number of design methodologies have been
developed and new project documentation and management techniques
proposed. The term structured programming is now often used to refer
collectively to the whole plethora of tools and techniques which have
evolved from the initial ideas.

Design Methods and Principles

In recent years a number of approaches have been proposed to system-
atize the program design process. They are extensions and elaborations of
Dijkstra’s basic structured programming principles. Some approaches have
been developed to the stage where they consist of an integrated collection of
methods and principles and form the basis of a methodology for program
design. The three design methodologies most used in the workplace are
Functional Decomposition, Data Flow Design and Data Structure Design.
Each methodology has its own strengths and weaknesses, and some are best



8 INTRODUCTION

applied to particular types of problem or to particular application areas. No
preferred, generally applicable methodology has emerged or can be
expected to emerge in the near future.

Two principles, top-down design and modularity, underly most of the
methodologies. Top-down design (Wirth?, Mills3) starts from a problem
specification and generates a hierarchic or tree structured design through the
process known as successive or stepwise refinement as described earlier.
Each level of refinement of the design corresponds to a particular level of
understanding of what the program has to do, independently of how the
result will be achieved at lower levels of refinement. The method advocates
that initial levels should concentrate on critical broad design issues and that
details should be postponed until lower levels. This is in contrast to bottom-
up design, a technique often associated with early versions of modular
programming. Bottom-up design again results in a hierarchic solution struc-
ture but in this case the lower level detailed modules are identified and
refined first and subsequently used as a foundation on which to build the
design. In practice, design is never solely top-down or bottom-up but rather a
combination of the two. In this text we adopt the view of most of the popular
methodologies that design should be predominantly top-down but it may be
necessary at certain times to practice bottom-up design to examine the
feasibility of some low-level module before design can proceed.

The decomposition of a problem into well-defined modules is a power-
ful tool in the fight against complexity. A ‘‘separation of concerns’ can be
achieved which allows each module to be understood independently, the
impact of design modifications localized to as few modules as possible
(preferably one), and modules to be developed independently. An impor-
tant principle known as data hiding or encapsulation (Parnas+) can assist in
realizing the benefits of modularity. It suggests that each module should be
constructed so that the function it accomplishes and the interface informa-
tion required to use it are clearly visible but that the internal code and data
structures used may be hidden away inside the module in the sense that they
need not be known to utilize the module. That is, what the module does is
clearly visible but how the module accomplishes its function should not be.
In particular, each data structure (or file structure) involved in a program
system should have the structure itself, the statements that access it, and the
statements that modify it, enclosed in a single module.

The major difference between methodologies can often be identified by
examining the technique each uses to decide how refinements are to be made
at each level of a design. Three major schools of thought have emerged.
Functional Decomposition suggests that design decisions should focus on
the operations which need to be performed to solve a problem. Data Flow
Design suggests that an analysis of the flow of data is of paramount impor-
tance whilst Data Structure Design suggests that the program structure



