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PREFACE

These previously unpublished manuscripts describe certain L-functions attached to

automorphic representations of the classical groups.

Part A dates from 1983-84 and represents work of Piatetski-Shapiro and Rallis. The
subject matter is a generalization of the method of Godement-Jacquet from GL(n) to a

simple classical group G.

Part B was written by Gelbart and Piatetski-Shapiro in the Fall of 1985, with an
Appendix by all three authors. This work concerns a generalization of Rankin-Selberg

convolution to G x GL(n), with G a classical reductive group of split rank n.

Parts A and B appear with their own Introductions and Bibliography. For a discussion
of how these results are related to the recent works of F. Shahidi, the reader is referred to
the ‘Postscript’ in the Introduction to Part B, and also to S. Gelbart and F. Shahidi’s new

paper on “Analytic Properties of Automorphic L-functions”.

The expeditious preparation of the final form of this Lecture Note volume was done

by Miriam Abraham of the Weizmann Institute, to whom we offer our thanks.

S. Gelbart
I. Piatetski-Shapiro

S. Rallis

January 1987

Research supported in part by Grant No. 84-00139 from the United States-Israel

Binational Science Foundation, Jerusalem, Israel.
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PART A : L-FUNCTIONS FOR THE CLASSICAL GROUPS

by

1. Piatetski-Shapiro and S. Rallis

Introduction.

These notes are based on lectures given by LI. Piatetski-Shapiro at the Institute for
Advanced Study in 1983-84. The notes were prepared by J. Cogdell, who made valuable

remarks improving both the mathematics and the style.

The theory described here generalizes the method of Godement-Jacquet from GL(n)
to the simple classical groups of symplectic, orthogonal, and unitary type. In particular,
it does not require the automorphic representations whose L-functions are analyzed to be
generic. Even when G = GL(n) (or more generally the unit group of a matrix algebra over
a division algebra) it gives a new way of looking at the Godement-Jacquet zeta-function
as a Rankin-Selberg type integral involving Eisenstein series on a much larger group. The
basic identity relating this Rankin-Selberg integral to a global zeta-integral for L(m,s) is
established axiomatically in §1. These axioms are then treated separately for the various
different classical groups in §§2-4, and the analytaic properties of the Eisenstein series are

developed in §5.



§1. A formal identity.

In this section we will present an identity, which allows us to construct L-functions
with Euler product associated to irreducible cuspidal automorphic representations of cer-
tain reductive groups. The construction is based on the classic Rankin-Selberg construc-
tion. It can be applied to all of the classical groups to yield new L-functions in certain

cases and new integral representations for some previously known L-functions.

We take k to be a global field, M the adeles of k and Iy the ideles of k. Take G to
be a reductive algebraic group with anisotropic center. (This means that if C' is the center
of G then Cx/Ca is compact.) Let H be another reductive algebraic group over k and
assume we can embed G X Gi*H. Identify G x G with its image under 7 and let GicH
be the image of G under the composition of the diagonal embedding of G — G x G and
the embedding 7 : G x G — H.

Let P be a parabolic subgroup of H. Then we have an action of G X G on the
flag variety X = P\ H and X will decompose into orbits under the action of G xG. A
G x G orbit X’ c X will be called negligible if the stabilizer R’ in G x G of a point z' € X’
contains the unipotent radical N’ of a proper parabolic subgroup of G x G as a normal
subgroup. Let zo € X be the point of X corresponding to the coset P1 and X its orbit.
The stabilizer Ry of zo in G x G is then just P N (G x G).

For our construction of L-functions we need that the following two conditions on

the action of G X G on X be satisfied:
(1) The stabilizer Ro of zo is G°.
(2) If X' is any orbit other than Xo, then X' is negligible.

For this reason, we will refer to Xy as the main orbit. Justification for the term
negligible will be clear from our construction.

Now assume we have H, P, and i : G x G <> H such that conditions (1) and (2)
are satisfied. Let 6 : P — k% be the modulus character of P and let w : Ig/k* — C be
any quasi-character such the w o § is trivial on GY4. Let f(g;w) € ind;ﬁ“(w 06). (Our

induction ind is not normalized, i.e., f € indg:(w 0 68) iff f(pg) = w(6(p))f(g) for g € Ha



and p € P4.) Then to f we may associate the usual Eisenstein series
Ef(hw)= Y flyhw)
~YEP\Hk

when this is absolutely convergent. If m is an irreducible cuspidal automorphic repre-
sentation of G and # its contragredient, then to ¢; € 7 and ¢2 € ™ we may associate a

Rankin-Selberg type L-function by setting

(1.1) L(w; ¢1,¢2, f) = / Ef((g1,92); w)é1(g1)92(92)dg1dg2

(GXG)k\(GXCla

Since ¢; and ¢, are cuspidal, this integral converges absolutely and inherits the analytic

properties of the Eisenstein series Ef(h;w).

A key property of these L-functions is that they will have an Euler product expan-

sion. This will follow from the following Basic Identity.

Basic Identity:

/ E;((g1,92);w)$1(91)92(92)dg1dgz =
(GxG)k\(GXGm

= - f((g,l);UJ) < 7|'(g)¢l,¢2 > dg

where < ¢1,¢2 > is the bilinear Peterson inner product given by

< 1o >=f 61(g)$2(9)dg -

Gr\Ga

Proof:

We first insert the definition of Ef(h,w) into the integral expression (1.1) for
L(w; ¢1, 2, f) and unfold.

Z f(~(g1, 92))) ¢1(91)P2(92)dg1dg2

L(w; ¢1, %2, f) = /
(GG \(GXGm \ p\ Hi

/ f("l(gl,gz)))¢‘1(91)4’2(92)‘191‘192
~EP\Hr/(GXG)k (GXG)I\(GXGm ,



where (G x @)} = {(91,92) € (G x G)k|v(91,92)7~" € Pr}. Now, the double cosets
P\ Hi/(G X G)x parameterize the orbits of (G X G)k on X = Pi \ Hr. We consider the

main orbit and the negligible orbits separately.

a) Assume o € Px \ Hix/(G x G)k, 7o = 1, corresponding to the main orbit.
Then (G x G)}° = (G x G)x N Pr = G{. Then

I(vo) = / £ (0 (01, 92); ) b1 (g1 ) b2lgz) do1 dox
(GXG)°\(GX G

/ i mad S 1) o Pkt sl
GI\(GX G

Since w o § is trivial on G"f,l we have

F((92,92) (97 'g1,1);w) = f((97 '91,1);w) -

If we now write G x G = G¢ G, where G; = {(g9,1) € G x G} and write (g1,92) =

(92,92)(g,1) with ¢ = g5 'g; then

I(0) = . f((g,1);w) (/c o ¢1(929)¢2(92)d92) dg

=/ f((g,1);w) < m(g)b1,¢2 > dg .

b) Negligible orbits.

Now let v € Px \ Hx/(G x G) correspond to a negligible orbit. 1f we consider the
action of G x G on P \ H, the stabilizer R” of Py in G x G is

R = {(g1,92)|P(91,92) € P} = {(91,92)[7(91,92)v ' € P} = (G x G)7 .

By the assumption that the orbit Py(G x G) is negligible, there is a proper parabolic

P7 C G x G whose unipotent radical N7 is normal in R7. Then

I(v) = / F(v(g1,92); w)d1(g1)d2(g2)dg1dg2
RI\(GX Gl

( / F(r(ra,r2) (04, 95)) b1 (r19h) ba(ragh)dridra)dgidgh -
R;\(Gx Glm R:\RA}



If in the inner sum we integrate first over N/ \ N7, the result is a function on Mj \ Ma

where M = N7\ R7. Hence we may write

/ F(v(r1,72) (91, 93)) 2 (r197) b2 (ragh)dridry =
RI\R}

— /Mk\M“ (/N7\NT f('7(n1yn2)(m19m2)(gisg’2))

¢1(n1m1g})d2(namags) - dnidng)dmydm; .

If we now write N7 = N; x N, with N; the unipotent radical of some parabolic P; C G
(at least one non-trivial), then, since § is trivial on the unipotent elements of Py, we have

the above integral equal to

/ f (v(em, ma)(gh, 45)) ( / ¢1(n1m1gg)dn1)
M\ Mgy Ny x\N1a

(/ ¢2(nemagh)dny | - dmidm, .
N2 x\N2m
Since ¢1 and ¢, are cusp forms, at least one of the integrals

/ éi(nimig;)dn;
N; x\N; ;

is identically zero. This implies that for the negligible orbits I(y) = 0 and hence they
contribute nothing to L(w; ¢y, ¢2, f) (thus justifying the term negligible). This completes
the proof.

Due to the uniqueness of the pairing of 7 with #, the global Peterson bilinear form
<,> decomposes into a product of local invariant forms <,>, in the sense that if ¢1 =
yé1,0 € 7 and @3 = [I,¢2 , € T are decomposable, then < 1,82 >=11, < @1,4, P2, >y
Keeping the basic identity in mind, we now define the local version of our L-functions.

For f € indg"" (wy 0 6y), 01,5 € 7y, and ¢y, € 7, , define

Lv(wv;¢l,vy¢2,u; fv) = /G f((g; l);wv) < 7rv(9)¢1,ua ¢2,u >, dgy .

Then as a corollary to the basic identity we have the following.

Corollary. The global L-function admits an Euler product given by

L(wv ¢la ¢2’ f) = HuLv(wu; ¢1,u, ¢2,v., fu)



for ¢ €Em,¢pa €7 ,and f € indg;:‘(w o 6) all decomposable.

Remark: A priori, one might try to define a global L-function as in (1.1) for
¢; € m; with m; arbitrary irreducible cuspidal automorphic representations. But, by the
Basic Identity, these would all be identically zero unless w2 ~ 7; since < 7(g)d1,d2 >=0

unless ¢2 € T .



§2. Explicit constructions for the symplectic, orthogonal,

and unitary groups.

In this section we will restrict our attention to the classical groups G of symplectic,
orthogonal, or unitary type. In these cases we will explicitly construct a group H, an
embedding 7 : G x G < H, and a parabolic P of H satisfying the conditions (1) and (2)
on the orbits of G X G in X = P\ H .

We begin by setting up some common notation. Let k be a global field.

(i) Symplectic groups: Let V be a vector space of even dimension n = 2m over
k and let (, ) be a non-degenerate skew-symmetric form on V. Let G C GL(V) be the

isometries of this form. Then G = Sp(n) .

(ii) Orthogonal groups: Let V be a vector space of (arbitrary) dimension n over
k and let ( , ) denote a non-degenerate symmetric bilinear form on V. Let G C GL(V)

be the group of isometries of (,) , so G =0(n) .

(iii)  Unitary groups: Let K’ be a quadratic extension of k. Let V' be a vector
space over K’ of dimension n and let ( , ) be a non-degenerate Hermitian form on V' with
respect to the non-trivial automorphism of K’ over k. Then let G C GL(n,K') be the

group of transformations preserving ( , ) , so that G = U(n) .

Now take G,V and ( , ) to be as in any of the cases (i), (ii), or (iii). In cases (i)
and (ii) set K = k and in case (iii) set K = K’ . We will construct H by “doubling the
variables” . Let W =V @ V and define a form <,> on W by

< (vlvvz)’(v,h”;) = (vl’vll) - (v2av’2)'

Then <, > is non-degenerate and of the same type as (, ) . The form <, > admits isotropic
subspaces of maximal dimension. In fact, if we let V¢ = {(v,v) € W} be the image of the
diagonal embedding of V in W then dimg (V%) =n = %dimK(W) and V¢ is isotropic for

<> .

Now let H C GL(2n,K) be the group of isometries of <,> , and let P be the

parabolic subgroup of H preserving V@ . There is an embedding 7 : G x & — /] by letting



(vi,v2) - 1(91,92) = (v191,v292) for vi,v2 € V and g1,92 € G . Identify G x G with its

image under 7 .

To show that H, P , and the embedding ¢ : G x G — H satisfy conditions (1) and
(2) of Section 1 we must investigate the orbit structure of X = P\ H under G x G . Let
iy : V < W be given by i, (v) = (v,0) and i_ : V < W be given by v_(v) = (o,v).
Let V* be the image of 74 . Let L be any maximal isotropic subspace of W. Then let
Lt=LnV*t, L= =LnNV~ k(L) = dimg (L"), and k= (L) = dimg(L~) . Since H
acts transitively on the space of maximal isotropic subspaces of W and P stabilizes v

then we may view X = P \ H as the variety of maximal isotropic subspaces of W .

Lemma 2.1.: Let L be a maximal isotropic subspace of W . Then k¥ (L) =
k(L) = k(L) and (L) is the only invariant of the G x G orbit of L in X ; in other words,
if k(L) = k(M) for L, M € X, then there exists ¢ € G x G such that Lg = M .

Proof: Let 7% be the orthogonal projection of W onto V* . Let L' = n (L) and
L' = 7~ (L) . Since LTis the kernel of ¥ restricted to L, dimgL = dimg L'+dimg L™ =
dimgL" + dimg Lt . On the other hand, LT C L’ and L is in the kernel of the form
(,) restricted to L’ . Since the form is non-degenerate on V' there must be a subspace
L, c V1t , of the same dimensions as Lt , which pairs non-degenerately with LT .
Therefore L' ® Ly C V* | so that dimg L' + dimg LT < dimgV = dimgL' + dimg L™,
and hence dimg Lt < dimgL~ . Similarly dimgL~ < dimg L% , so that k™ (L) =
dimg LT = dimgL~ = k(L) . Note that this implies that L’ is the full orthogonal

subspace to Lt in V* and similarly for L” and L™ in V.

Since L7 is the kernel of the form ( , ) restricted to L', (, ) induces a non-degenerate
form on LT\ L'. Similarly for L~ C L"”. Letm; : L’ - L*\L'and 75 : L" — L=\ L" be
the projections. Then the isotropic subspace L defines a isometry gr, : Lt \ L' — L=\ L"
by (myv1)gr, = (mev2) iff (v1,v2) € L. This is seen to be well-defined and is an isometry
since L is totally isotropic in W. Furthermore, the spaces L', LT, L”, L~ and the isometry
gz completely determine L, for L = {(v1,v2) : v1 € L',v2 € L" and (m1v1)gL = mava} .

That k(L) is an invariant of the G x G orbit of L in X is evident, since (L(g1,92))t =
L*tg, . Now we will show that if L and M are totally isotropic subspaces of W with
k(L) = k(M) then there exists g = (g1,92) € G x G such that Lg = M . Since Lt and

M+ are isotropic in V't of the same dimension, there is LTg; = M™* . Similarly there is



g2 € G such that L=g; = M~ . So replacing L by L(g1,92) we may assume Lt =Mt
and I~ = M~ . Then since L' is the orthocomplement of Lt , and the same is true for
M' , we have L' = M’ . Similarly L” = M"” . Then L and M both define isometries
gr,gm : LY\ L' — L=\ L" . These will differ by an isometry - of L=\ L" , ie,
gL = gmy with vy : L=\ L" — L=\ L" . ~ may be lifted to an isometry ~" of L" satisfying
mg(vay") = (m2v2)~y and this may be extended, via Witt’s theorem, to an isometry 4" of
V—. We claim that L(1,4")"' = M, with (1,4"”) € G x G . We have (vi,v2) € L iff
(m1v1)gr = (mavz) . Therefore L(1,4")7' = {(v1,v2) € L’ x L" : (m1v1)gL = ma(v2y")} .
But g7~ = gpr - Therefore (vy,v2) € L(1,~4") " iff (myv1)gm = (mav2) iff (vi,v2) € M.

This completes the proof.

Now for 0 < d < n, let X4 be the G x G orbit in X of maximal isotropic subspaces
L with k(L) = d. Then since (V%) = 0 we have V¢ in the orbit Xy . The stabilizer of
Vdin G x G is (G x G)NP. On the other hand, an element (91,92) € G x G stabilizes v
iff vg; = vgg for allv € V, i.e., iff g1 = g2. So indeed G® = (G x G) N P and condition
(1) is satisfied.

To show that condition (2) is satisfied, we must show that if d > 0 then the orbit
X is negligible. So fix d > 0 and let L € X;. Let Pt be the parabolic subgroup
of G preserving the flag V. > L' D L% and P~ the parabolic subgroup of G preserving
the flag V. D L” D L~ . Since d > 0 these are proper parabolics. Let NZ be the
unipotent radical of P* so that N = N+ x N~ is then the unipotent radical of the proper
parabolic PT x P~ of G x G. Now let R be the stabilizer of L in G X G. R can
be characterized as the pairs (g1,92) € PT x P~ such that (m (v191))9z = ma(vag2) -
(Recall that my : L' — LT\ L' and my : L" — L~ \ L" are the canonical projections.)
Since N is normal in P+ x P~ we need only show that N C R. But by definition,
N+ induces the identity on L™ \ L' and N~ induces the identity on L™ \ L" . So for
(v1,v2) € L' x L" and (n1,n2) € N we have m1(ving) = mi(v1) and my(venz) = ma(ve) -
So (71 (vin1))gr = (r1(v1))gr = m2(v2) = ma(vanz) . Then N C R. This shows that for

d > 0 the orbit X is negligible. Therefore we have proved the following proposition.

Proposition 2.1: The choices of group H, parabolic P and embedding T

G x G — H above satisfy conditions (1) and (2) of Section 1.
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§3. Explicit constructions for PGL(n). Connections with

the work of Godement and Jacquet.

Let D be a central simple division algebra of degree m over k and let G = PGL(n, D).
In this section we will construct a group H, parabolic subgroup P C H and an embedding
i: G x G < H satisfying conditions (1) and (2) of Sect. 1. In this situation, the
I-functions of Section 1 will be the same as the zeta functions considered by Godement
and Jacquet in [G-J].

3.1. LetV = M(n,D) . As a vector space over k, V has dimension N = n?m?2.

There is a natural action of GL(n,D) x GL(n,D) on V by z - (91,92) = g5 'zgy for
gi € GL(n,D) and z € M(n,D). This gives a homomorphism GL(n,D) x GL(n,D) —
GL(N,k) which will induce an embedding ¢ : G X G — PGL(N,k) . We will take
H = PGL(N,k) and ¢ : G x G — H this embedding. Identify G x G with its image. Let
eo € V correspond to the identity 1, € M(n, D). Take P to be the parabolic subgroup of
H stabilizing the k-line through e .

To show that conditions (1) and (2) of Sect. 1 are satisfied, we must determine the
orbit structure of X = P\ H under the action of G x G . Since P stabilizes a k-line
in V, X is the variety of k-lines in V . For z € V we will let < z > denote the k-line
spanned by z. Let W = D™ be a vector space over D considered as a space of row
vectors. W is a D-module under left multiplication and a M(n, D) module under right
matrix multiplication. As a vector space over k, dimg(W) = nm? . For each z € V we
may define an invariant of the G x G orbit of < z > in X as follows. Viewing = as an
element of M(n, D), Wz will be a subspace of W. If y = Az with A € k¥ then Wy = Wz

and hence Wz depends only on the span < z > of z. Then define k(z) = dimg(Wz).

Lemma 3.1: For z € V, (z) is the only invariant of the G x G orbit of < z > in
X, in other words if k(z1) = k(z2), z1,22 € V then there exists a ¢ € G X G, such that
<zp>g=<2x2 > .

Proof: We have already seen that x(z) depends only on the span < £ > of z. To
show that x(z) is an invariant of the G x G orbit it will suffice to show that for ¢,,92 €
GL(n, D), x(g; 'zg1) = k(z) . But this is clear since k(g3 'zg1) = dimk(Wgz_lzgl) =



