Algol 68

TN W NN NN WO N W NN

xxxxxukw

L..m Eptch

o “"“T omnixxd

i .nui

llllh

ALGOL 68

a first and second course

ANDREW D. McGETTRICK

Department of Computer Science
University of Strathclyde
Glasgow, Scotland

CAMBRIDGE UNIVERSITY PRESS

CAMBRIDGE
LONDON +:NEW YORK - MELBOURNE

Published by the Syndics of the Cambridge University Press

The Pitt Building, Trumpington Street, Cambridge CB2 1RP
Bentley House, 200 Euston Road, London NW1 2DB

32 East 57th Street, New York, NY 10022, USA

296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia

© Cambridge University Press 1978
First published 1978

Printed in Great Britain at the University Press, Cambridge

Library of Congress cataloguing in publication data
McGettrick, Andrew D. 1944-

ALGOL 68: a first and second course
(Cambridge computer science texts; 8)

Includes index

1. ALGOL (Computer program language) I. Title
II. Series

QA76.73.A24M3 001.6'424 77-1104

ISBN 0 521 21412 2 hard covers

ISBN 0 521 29143 7 paperback

To my wife, Sheila

PREFACE

This book originated from lectures first given at the University of
Strathclyde in 1973—4 to first year undergraduates, many of whom
had no previous knowledge of programming. Many of the students
were not taking computer science as their main subject but merely as a
subsidiary subject. They therefore served as a suitable audience on
whom to inflict lectures attempting to teach ALGOL 68 as a first
programming language.

The book itself is concerned with the revised version of ALGOL 68
(see Acta Informatica, vol. 5, Fasc 1-3, 1975, pp. 1-236). It consists
of nine chapters. I believe that, for a first course on programming,
the material contained in chapters 1-5 is suitable; this forms an
ALGOL-60-type-subset. The more advanced features of ALGOL 68
are contained in the later chapters and these provide suitable material
for a second course. The individual chapters (chapters 6-9) are for
the most part self-contained. Appendix A summarises in a convenient
way the ALGOL 68 standard environment. Appendix B summarises
the syntax of ALGOL 68 by means of a syntax chart due originally to
J. M. Watt, J. E. L. Peck and M. Sintzoff.

Throughout the book there are exercises and problems to accom-
pany the chapters. The exercises are intended to test whether the
student has a sufficient understanding of the theory in the preceding
chapter; sample solutions to these can be found at the end of the
book. The problems on the other hand are intended to be programmed
and for these no solutions are provided. It is hoped that via both the
exercises and problems the student can develop an interest in other
branches of computer science. It would also be invaluable if students
can be trained not just to answer each question but for every question
to ask themselves two other similar questions and answer these.

I should like to take this opportunity of thanking various people
for helping me in the preparation of this book. My debt to the authors
of the Revised ALGOL 68 Report is obvious. I must also thank
J. M. Watt, J. E. L. Peck and M. Sintzoff for their permission to use
their syntax chart.

During the writing of the book I had many valuable discussions

Xi

on ALGOL 68 especially with Dr. R. B. Hunter but also with Dr. R.
Kingslake and other colleagues at Strathclyde. My thanks are due to
several people who commented on different parts of the earlier draft
of the manuscript. Mr. Ian Walker of the Computer Laboratory,
Cambridge University, read the entire manuscript and his comments
and our subsequent discussions were most valuable. Other people
deserving thanks include Dr. C. Hawksley of the Computer Science
Department, Keele University, and Dr. R. Needham of the Computer
Laboratory, Cambridge. The typing of the manuscript, and other
forms of secretarial work, were performed most willingly and ably
by my mother Mrs. M. McGettrick and also by Mrs. M. MacDougall,
Miss M. Barron and Miss A. Wisley. On a more personal level I must
thank my wife Sheila for her constant support and encouragement
throughout the entire period of writing the book.

Finally I am greatly indebted to the Syndics of Cambridge Univer-
sity Press for publishing this book.

Glasgow, April 1976. A. D. McG.

Xil

CONTENTS

:—lh—t—;i—l
W=

NENEN
[S

23

3.1

Preface

Introduction to ALGOL 68
Preliminaries

Remarks on symbolism

Introduction to ALGOL 68
Preparing programs for the computer

Basic concepts

Modes

Denotations

2.2.1 Integer denotations

2.2.2 Real denotations

2.2.3 Character denotations

2.2.4 Boolean denotations

Identity and variable declarations

The basic arithmetic operators

2.4.1 Addition, subtraction and multiplication
2.4.2 Division

2.4.3 Exponentiation

2.4.4 Monadic operators

Operator priority and bracketing
Comparison and boolean operators
Coercions — dereferencing and widening
Assignations (or assignment statements)
Standard operators

2.9.1 Arithmetical assignment operators
2.9.2 Operators performing mode changes
2.9.3 Other operators

Layout, comments and pragmatic remarks
Simple transput

2.11.1 The read statement

2.11.2 The print or write statement

2.11.3 The conversion routines

Exercises

Programming problems

Clauses
Environments

¢

3.2
3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

vi

Unitary clauses

Serial clauses

3.3.1 Value associated with a serial clause
3.3.2 Voiding

Closed clauses

3.4.1 Value associated with a closed clause
3.4.2 Closed clauses and coercions
Ranges and reaches

3.5.1 ‘Equivalence’ in ALGOL 68

3.5.2 Defining and applied occurrences
3.5.3 Results delivered by closed clauses
Collateral phrases

3.6.1 Void-collateral-clauses

3.6.2 Collateral declarations

Loop clauses

3.7.1 Tlustrative examples

3.7.2 General form of loop clauses

3.7.3 Use of skip

3.7.4 Ranges associated with loop clauses
Choice clauses

3.8.1 Conditional clauses

3.8.2 Case clauses

3.8.3 Ranges associated with choice clauses
3.8.4 Balancing

Jumps

3.9.1 Labelling and jumping

3.9.2 Restrictions on jumps

3.9.3 Special cases of jumps

Programs in ALGOL 68

3.10.1 Enclosed clauses

3.10.2 General remarks about programs
3.10.3 Structured programming

3.10.4 Miscellaneous examples on programming
Exercises

Programming problems

Multiple values and simple structures

Multiple values

Declarations and subscripting

Modes associated with multiple values
Multiple values of several dimensions
Slicing

Assignations involving multiple values
Row displays

Character manipulation

Simple transput involving multiple values
Rowing

et ettt et et ata
k) p—
OO~ WUNHB WN -

106
107
108
111
113
115
117
118

4.2

43

52

5.3

k)
N —

4.1.10 Variable declarations and equivalent 1dent1ty

declarations revisited
4.1.11 Programming using multiple values
Simple structures
4.2.1 Declarations and selection
4.2.2 Modes associated with structures
4.2.3 Building more complex structures
4.2.4 Multiple selection
4.2.5 Assignations involving structures
4.2.6 Structure displays
4.2.7 Transput involving structures
4.2.8 Programming using simple structures
Simple mode declarations
4.3.1 Examples of mode declarations
4.3.2 row-of-row-of-modes
4.3.3 Rowing revisited
Exercises
Programming problems

Procedures and operators

Procedures

5.1.1 The standard procedures

5.1.2 Modes associated with procedures
5.1.3 Routine texts

5.1.4 The ALGOL 68 calling mechanism
5.1.5 Recursive procedures

5.1.6 Deproceduring

5.1.7 Deproceduring and voiding
Operators

5.2.1 Extending the definition of operators
5.2.2 Introducing new operators

5.2.3 The uniqueness condition for operators

5.2.4 Identification of operators

The use of procedures and operators in programming

Exercises
Programming problems

More standard modes
Complex numbers

The modes bytes and bits
6.2.1 Bytes

6.2.2 Bits

Multiple length facilities

6.3.1 Environment enquiries associated with multiple length

facilities

6.3.2 Multiple length denotations and related topics

119
122
124
124
126
127
129
129
130
131
132

176

179
179
182
183
184
187

188
189

vii

7.2

7.3

7.4

€5

7.6

7.7

6.3.3 Extensions of standard operators
6.3.4 Standard constants and functions
6.3.5 Transput

Programming problems

Advanced features associated with modes
Flexible names

7.1.1 Declaring flexible names

7.1.2 Deflexing

7.1.3 Transient names

7.1.4 flex and declarers

7.1.5 The standard mode string

United modes

7.2.1 Uniting

7.2.2 Component modes

7.2.3 Conformity clauses

7.2.4 Overheads in using united modes
Orthogonality — modes and constructions
7.3.1 Modes

7.3.2 Actual, formal and virtual declarers
7.3.3 Constructions

7.3.4 Pointers

7.3.5 Casts

7.3.6 Identity relations

Orthogonality — coercions

7.4.1 NONPROC modes revisited

7.4.2 Weak dereferencing

7.4.3 Review of coercions and syntactic positions
Orthogonality — scope

7.5.1 Scope revisited

7.5.2 Local generators revisited

7.5.3 Global or heap generators

7.5.4 Scope of routines

Recursive modes

7.6.1 Well-formed modes

7.6.2 Equivalent modes

Programming examples

7.7.1 Using flexible names

7.7.2 Using recursive modes

7.7.3 Using united modes

Exercises

Programming problems

Parallel processing
Introductory remarks-

The mutual exclusion and message passing problems

190
192
193
193

195
195
196
197
199
201
202
203

206
208
211
211
212
212
214
215
216
216
218
218
219
221
222
222
224
226
228
229
231
233
234
234
235
237
238
242

247
247
248

8.3 Parallel clauses and semaphores 250

8.4 Solution to mutual exclusion problem 251
8.5 Solution to message passing problem 252
8.6 The dining philosophers problem 256
8.7 References on parallel processing 258
Programming problems 259
9 Transput 262
9.1 Books, channels and files 263
9.1.1 Books 264
9.1.2 Channels 266
9.1.3 Files 269
9.2 Formatless transput 272
9.2.1 Straightening 272
9.2.2 Linking books to files 273
9.2.3. The get and put routines 276
9.2.4 space, newline, etc. revisited 277
9.2.5 Association 277
9.3 Accessing and altering files 279
9.3.1 File enquiries 279
9.3.2 The event routines 280
9.3.3 Altering identification of books, terminator strings and
character conversion codes 284
9.3.4 Setting and resetting files 285
9.3.5 Manipulating files 288
9.4 Formatted transput 290
9.4.1 Format texts 292
9.4.2 Pictures 293
9.4.3 Insertions 294
9.4.4. Patterns, moulds and frames 295
9.4.5 Use of the formatted transput routines 296
9.4.6 The event routings revisited 297
9.4.7 Sign moulds 299
9.4.8 Special frames 300
9.49 Patterns 302
9.4.10 Pragmatic remarks and comments in format texts 309
9.4.11 Controlling transput using formats 309
9.4.12 Manipulating formats 311
9.5 Binary transput 312
Exercises 315
Programming problems 318
Answers to exercises 321
Appendix A - the standard environment 330
Appendix B — the syntax chart 339
Index 343

ix

1

INTRODUCTION TO ALGOL 68

1.1. Preliminaries

The preface to volume one of D. E. Knuth’s seven-volume set of
books on ‘The Art of Computer Programming’ begins:

‘The process of preparing programs for a digital computer is
especially attractive because it not only can be economically and
scientifically rewarding, it can also be an aesthetic experience
much like composing poetry or music. This book is the first of a
seven-volume set of books that has been designed to train the
reader in the various skills which go into a programmer’s craft.’

From this quotation it follows that in an introductory text such as
this it will not be possible to cover all aspects of programming.

The word program — and programming is just the art of writing
programs — is rather difficult to define. Roughly speaking, a program
is a set of instructions which have usually to be performed or executed
by a computer. The instructions which computers actually execute
are very simple. They will vary from one make of computer to another
but usually include such primitive operations as adding and sub-
tracting two numbers, moving information from one part of the
machine to another or reading and printing information. These
primitives are called machine-code instructions: a large computer
may possess as many as 100 or 200 and sometimes more. The set of
such instructions for a particular computer together with the method
of expressing them forms what is called a programming language.
Since these instructions are very primitive, such a language is called
a low-level programming language. It is possible to write programs
to solve complicated problems using only machine-code instructions
but this can prove a very frustrating introduction to the computer.

Fortunately another class of programming languages has been
developed. These so-called high-level languages allow the use of a
mathematical sort of notation. In a high-level language it might be
possible to write

a+bx(c+d)

and the computer will evaluate this assuming that a, b, ¢ and d had at
an earlier part of the program been given some values. If, for instance,
a had not been given a value the program would be at fault. The sort of
instructions one can write in high-level languages are still restricted
and it is necessary to learn the different kinds of instructions that are
available and the effect these have. The process of carrying out the
various instructions in a program will be referred to as the elaboration
or execution of the program.

High-level languages (like natural languages such as English)
possess a syntax and when writing programs it is necessary to adhere
to this syntax. Thus if in writing the above expression a bracket
had been omitted then a syntax error would (probably) have been
flagged. Syntax errors tend to be caused by such mistakes as omitting
brackets, including too many brackets, omitting semi-colons, full-
stops, quotation marks and operators. When presenting the computer
with a program, therefore, it is preferable that the program should
contain no syntax errors, wrong spellings, etc.

The computer will do only as it is asked. It will not deduce the
intentions of the careless programmer. If an instruction requests
that two numbers be added and the programmer intended that they
should have been subtracted, the computer will add them. To counter-
act this it is advisable to prove if possible that the program does what
was intended and to carry out a reasonable number of checks to
give confidence in the results.

Earlier it was remarked that the computer executes machine-code
instructions. How does it deal with instructions presented in a high-
level language? It cannot execute these directly and therefore some
form of translation must take place. For each high-level language
that a particular computer can handle there is available a (usually
fairly large) program called a compiler which will take a program
written in that language and translate it into machine-code instruc-
tions which are then executed by the computer. If the program in the
high-level language contains syntax errors (or some other kinds of
errors) the compiler should inform the writer of the program of his
errors.

The most widely used high-level languages include FORTRAN,
COBOL, ALGOL 60, PL/1 and ALGOL 68.

FORTRAN was originally designed c. 1955-6 to simplify the
writing of programs for numerical calculations. It is one of the most
commonly used high-level languages. However, it lacks many
modern facilities and is quite unsuitable as a tool for present-day
programming.

ALGOL 60, as the name suggests, was designed in 1960 and some

amendments were later added c. 1962. Like FORTRAN, ALGOL 60
was designed for numerical calculation. It had a great impact on
Computer Science in general.

COBOL is a language whose use is confined almost entirely to the
business world. It is used for writing programs to perform tasks
such as producing payrolls, factory stock control, etc.

PL/1 and ALGOL 68 are more modern languages and have much
wider application than the earlier languages. PL/1 was developed by
IBM c. 1965 and the original specification of ALGOL 68 appeared in
1968. The revised version of ALGOL 68 appeared in 1974.

The aim of this book is to introduce programming and ALGOL 68.
The two topics will be considerably interwoven since the more
ALGOL 68 one knows the more sophisticated the programs one can
write. ALGOL 68 will therefore have a dual role. It will be used as
a high-level language in which to write programs and it will itself be
an object of study.

1.2. Remarks on symbolism

In mathematics frequent use is made of symbols to denote constants

or variables of different kinds.

(i) The expressions 2zr and nr? give, respectively, the circumference
and area of a circle whose radius is r. In these expressions 2
and © represent constants and r is a variable whose value can
be any non-negative real number.

(ii) In the expressions ax+ by+c and ax?+bx+c one might
regard a, b and c as real constants and x and y as variables whose
values range over the set of real numbers.

(iii) Each of sin, cos and tan is a function which is constant in the
same sort of way as, for instance, 7 is constant. On the other hand
a sentence starting “Let f be a function ... > will often indicate
that f is a variable whose value can be any function with the
stated property. This may be a unique function but there may
be more than one function with that property.

Other examples should come readily to mind.

A similar symbolism is used in ALGOL 68. Constants such as
pi, 14 and sin will be used and variables can be introduced. But
there are some important differences and it is necessary to be very
clear about the values associated with ALGOL 68 constants and
variables. Some of these differences arise from the way in which
variables are represented in the computer. In order to understand
this an extremely simple-minded explanation follows.

The main store of a computer consists of many locations (usually

3

called words or bytes). The exact number varies from computer to
computer but the number is usually expressed in units of K where
1K= 1024 = 21°. The storage capacity of a modern computer lies
between about 4K and 1024K bytes. These locations are capable of
holding different kinds of information e.g. integers, real numbers,
characters, etc. and this information can be altered. The locations
themselves are accessed by means of addresses. The address of a
particular location is often thought of as a unique integer in the
range 0 to (n-1) where there are » locations in the machine.

When the compiler is translating an ALGOL 68 program into
machine-code it will represent a variable by means of an address.
Altering the value of a variable amounts to altering the contents of
the location with that address. It is extremely important to distinguish
between the address of a location and the contents of that location.

1.3. Introduction to ALGOL 68

Some simple examples of ALGOL 68 programs now follow. The
examples are trivial but they serve to illustrate certain points. They
should not be taken as models of perfect programs. Example 1.3b,
for instance, attempts to find the circumference of a circle. It will
certainly accomplish this but some instructions should be included
to ensure that the radius is not a negative number. Such improvements,
together with others of a different nature, could be made but their
introduction would cause extra complications which are better
avoided for the moment.

Example 1.3a. Write a program to calculate the circumference of
a circle whose radius is e =2.7182818284.

begin real ¢ = 2.7182818284; real circum;

circum := 2 X pi X e;

print (" circumference of a circle of radius e is”, circum))
end

Clearly this program is extremely limited since it will calculate the
circumference of only one particular circle. A more useful program
would calculate the circumference of an arbitrary circle (see example
1.3b). A certain generality is desirable in a program.

In order to understand the effect of the various steps in the program
above consider successive parts separately.

(1) The (initial) begin denotes the start of the program.

(i1) real e =2.7182818284 allows e to denote the constant value
2.7182818284. real indicates that e represents a real number. The

4

equals sign is crucial in this section of the program.

(iii) The next action to be executed is that following the semi-colon.
For this reason the semi-colon is often referred to as the go-on symbol.
No mention will be made of the remaining semi-colons in this
program. Each semi-colon indicates that the next action to be executed
follows that particular semi-colon.

(iv) real circum causes space to be reserved for a variable and this
variable is to be identified as circum. The variable takes values which
are real numbers.

(v) circum := 2 x pi x e The expression on the right hand side
of the becomes symbol, i.e. :=, is evaluated. The symbol x denotes
multiplication and must be stated explicitly; thus 2pie would be
illegal. Note that e has already been defined and its value thereby
known. pi, however, is automatically known to the ALGOL 68
compiler. There is no need to define its value.

The effect of the statement is that the value obtained from the
evaluation of 2 x pi x e is given or assigned to the variable circum.

(vi) print (("circumference of a circle of radius e is", circum))
The characters between “and” are printed. These are followed by the
current value of the variable circum. Thus two objects are printed,
a string of characters and the current value of a real variable. In
the print statement above these two objects are separated by a comma
and surrounded by brackets. If a single object, say circum, had to be
printed then print (circum) would have been adequate. The output
produced by this print statement might look like

circumference of a circle of radius e is +1.7079 ... +1

where the dots denote the remaining figures after the decimal point
and |, + 1 indicates that 1.7079 . .. is to be multiplied by 10! thus
producing 17.079 ... (,, +4 would similarly indicate multiplication
by 104).

(vii) end denotes the end of the program and matches the initial
begin. Note that there is no go-on symbol between the print statement
and the end.

Example 1.3b. Write a program to calculate the circumference and
area of a circle of arbitrary radius. (The radius is assumed to be non-
negative but again no check is included.)

begin real r, circum, area;
read (r);
circum := 2 X pi X ryarea .= pi X r Xr;
print (("circumference and area of a circle of radius”, r,
" are”, newline, circum,” and’, area))
end

