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PREFACE

This book contains lectures on matrices given at Princeton University at
various times since 1920. It was my intention to include full notes on the his-
tory of the subject, but this has proved impossible owing to circumstances
beyond my control, and I have had to content myself with very brief notes (see
Appendix I). A bibliography is given in Appendix II. In compiling it, espe-
cially for the period of the last twenty-five years, there was considerable difficulty
in deciding whether to include certain papers which, if they had occurred earlier,
would probably have found a place there. In the main, I have not included
articles which do not use matrices as an algebraic calculus, or whose interest lies
in some other part of mathematics rather than in the theory of matrices; but
consistency in this has probably not been attained.

Since these lectures have been prepared over a somewhat lengthy period of
time, they owe mugh to the criticism of many friends. In particular, Professor
A. A. Albert and Dr. J. L. Dorroh read most of the MS making many sugges-
tions, and the former gave material help in the preparation of the later sections
of Chapter X.

J. H. M. WEDDERRBURN.
 Princeton, N. J.,
July 20, 1934.
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CORRIGENDA

4, line 9 from top: on second 2 read j for p

6, Theorem 1, add: and conversely, if a matrix is commutative with every
other matrix, it is a scalar matrix.

7, line 12 from foot; for first and third A read |A]
11, lines 10, 11 from foot: for (Q'Q) read (Q'Q)*
13, line 9 from foot: for Sgix read Sgix
13, line 6 from foot: for g.s1 read gois
14, line 3 from top: before a;ie; read Z.
18, line 8 from foot: for j read v;
20, line 8 from foot: for r + 1 readr — 1
30, line 13 from top: for = read —
31, line 4 from foot: for second x; read xe;; add e; + e2 = 1
42, equation (16): for 1 read —1
54, line 14 from foot; for (12) read (13)
54, line 6 from foot: for (14) read (15)
54, line 3 from foot: for (13) read (16)
54, line 2 from foot: for (13) read (14)
56, line 12 from top: correct term after Z to read ki g+iz:
67, lines 4, 5, 6, 7: the exponent n on the second last C should read (}).
68, line 11 from foot: before = read (—1)*
68, line 8 from foot: before |} read (—1)*
74, line 11 from foot: forr = 1 read r = 3
81, line 4 from foot: for 1/8:! read 8! with similar change in last line
84, line 13 from foot: interchange i and j,
85, line 8 from foot: for & read &1

86, line 7 from top: for first e; read e;



¢

page 92, line 11 from foot: delete from ‘‘and if”’ to end of paragraph
page 101, line 6 from foot: after hermitian insert A = A’

page 103, line 4 from foot: delete first 0;forq =t + lreadq=s + 1
page 112, equation (23): for { } read [ ]

page 116, line 7 from top: add Every power series converges when x is nilpotent,

page 119, line 9 from top: for “at least . . . first” read ‘the H.C.F. of the t’s
is relatively prime to m”’

‘page 122, line 4 from foot: multiply bracket by e and delete same inside
page 122, equation (30): for g;; read p;; = e*igy;

page 123, lines 2 and 3 from top: for g;; read py;

page 123, equations (32) and (33): for 7 read 2«

page 125, line 4 from top: read a,"'((A), a2"2(A), - -+, au™*(A)

page 126, line 13 from top: for | | read | |

page 126, equation (45): for first « read a

page 129, equation (63): in first term the bars should be heavy

page 129, line 5 from foot: for |x| read [x]

page 134, line 6 from top: multiply right side of equation by 2

page 136, line 10 from top: for & read &

page 137, equation (103): read p = — 9,9

page 144, equation (24): read x'axa™

page 156, line 6 from top: for second = read < and add “-< A, whence A = ZA;"
page 164, line 8 from top: for primitive read minimal

page 164, line 7 from foot: for invariant read semi-invariant

page 164, last line: before ‘' complete'’ insert “‘suitably chosen’

page 166, line 10 from foot: for equivalent read invariant

page 166, line 5 from foot: for first B: read B,

page 167, Theorem 9:for j = kreadi F t

page 171, line 5 from top: delete 80



CHAPTER 1
MATRICES AND VECTORS

1.01 Linear transformations and vectors. In a set of linear equations

77{> = um + Gum + - + Qg
15 = Gum + Geme + - -+ G2avn

Na = AniM + G + .- + Guntn

or
0 W=D am  G=1,2 )
i=1
the quantities 71, 72, - - -, 7. may be regarded as the coordinates of a point P in

n-space and the point P’'(n{, 73, -, n,) is then said to be derived from P by
the linear homogeneous transformation (1). Or, in place of regarding the »’s as
the coordinates of a point we may look on them as the components of a veetor y
and consider (1) as defining an operation which transforms y into a new vector
y’. We shall be concerned here with the properties of such transformations,
sometimes considered abstractly as entities in themselves, and sometimes in
conjunction with vectors.

To prevent misconceptions as to their meaning we shall now define a few terms
which are probably already familiar to the reader. By a scalar or number we
mean an element of the field in which all coefficients of transformations and
vectors are supposed to lie; unless otherwise stated the reader may assume
that a scalar is an ordinary number real or complex.

A vector! of order = is defined as a set of n scalars (&, &, ---, &) given in a
definite order. This set, regarded as a single entity, is denoted by a single
symbol, say z, and we write

r = (& &, -, £).

The scalars &, &, -+, & are called the coordinates or components of the vector.
Iy = (m,n, ---, 1) is also a vector, we say that z = y if, and only if, cor-
responding coordinates are equal, thatis, &, = 7, (¢ = 1,2, ---, n). The vector

z = (;1:;21 Tty g.n) = (El+’71;£2+772y Y En+nn)

is called the sum of z and y and is written x + y; it is easily seen that the opera-
tion of addition so defined is commutative and associative, and it has a unique
inverse if we agree to write 0 for the vector (0,0, ---, 0).

1 In chapter 5 we shall find it convenient to use the name hypernumber for the term
vector which is then used in a more restricted sense, which, however, does not conflict
with the use made of it here.

1



2 MATRICES AND VECTORS [I]

If o is a scalar, we shall write

pPr = Zp = (PEI; PE?: Tty pfﬂ)'

This is the only kind of multiplication we shall use regularly in connection with
vectors.

1.02 Linear dependence. In this section we shall express in terms of

vectors the familiar notions of linear dependence.? If zi, z;, ---, z, are vec-
tors and wy, ws, - -, w,scalars, any vector of the form

(2) I=wlx1+ﬁ.’2$2+ e +wrxr

is said to be linearly dependent on z,, 13, ---, z,; and these vectors are called

linearly independent if an equation which is reducible to the form
0=t + w2+ -+ + wr,

can only be true when each w; = 0. Geometrically the r vectors determine an
r-dimensional subspace of the original n-space and, if z;, 3, - -, z,are taken as
the coordinate axes, w;, wg, - -+, w, in (2) are the coordinates of z.

We shall call the totality of vectors z of the form (2) the linear set or subspace
(T, %3 -+, 2;) and, when z,, 75, ---, z, are linearly independent, they are
said to form a basis of the set. The number of elements in a basis of a set is
called the order of the set.

Suppose now that (zi, z2, ---, z,), (41, 42, -, y,) are bases of the same
linear set and assume 8 > r. Since the z’s form a basis, each y can be expressed
in the form

3) Yi = 8a%1 + Gt + -+ +asx, (G =1,2 .-, )
and, since the y’s form a basis, we may set

zi = bay1 + baye + -+ + biy, i=12 ---, 7
and therefore from (3)

4) yi = Zr: GiT; = 2 @i 2 bikye = Z‘: Cikyfky
k=1

i=1 i=1 k=1

r
where ¢ = 2 a4;b;k, which may also be written
i=1
.

(5) Cik = E a;,-b,-k (1, = 1, 2, ceey S)

i=1

if we agree to set a;; = O when j > s. Since the y’s are linearly independent,
'(4) can only hold true if ¢;; = 1, ¢ = 0 ( k) so that the determinant

2 See for instance Bocher, Introduction to Higher Algebra, p. 34.



[1.03] LINEAR VECTOR FUNCTIONS AND MATRICES 3

lew| = 1. But from the rule for forming the produect of two determinants it
follows from (5) that |ci | = | @ || bu | which implies (i) that | au | = 0 and
(ii) that r = s, since otherwise | au | contains the column a; , , ; each element
of which is 0. The order of a set is therefore independent of the basis chosen
to represent it.

It follows readily from the theory of linear equations (or from §1.11 below)
that, if | a;; | # 0 in (3), then these equations can be solved for the z’s in terms
of the y’s, so that the conditions established above are sufficient as well as
necessary in order that the y’s shall form a basis.

If e; denotes the vector whose 7th coordinate is 1 and whose other coordinates
are 0, we see immediately that we may write

z=*fe + e+ - 4 e

in place of z = (&, &, ---, £.). Hence e, e, ---, e, form a basis of our
n-space. We shall call this the fundamental basis and the individual vectors e;
the fundamental unit vectors.

If 21, 25, ---, zr < n) is a basis of a subspace of order r, we can always
find n—r vectors z, 41, -+, =, such that z;, 2, ---, 2, is a basis of the
fundamental space. For, if z, ., is any vector not lying in (zi, zs, ---, z,),
there cannot be any relation

w2y + wory + - - + oz + @0 12y 1 =0

in which w, +, # 0 (in fact every w must be 0) and hence the order of (z,,
x3, -, Tr, Tr +1)isr + 1. Since the order of (e, 2, - -, e,) is n, a repetition
of this process leads to a basis 21, 2, -+, z,, -+, 2, of order n after a finite
number of steps; a suitably chosen e; may be taken for z, , ;. The (n—r)-space
(®r 41, -+, Ta) is said to be complementary to (x, x5, ---, z,); it is of course
not unique.

1.03 Linear vector functions and matrices. The set of linear equations
given in §1.01, namely,

n

®) =D am (=12, n

i=1

define the vector ¥’ = (91, 75, ---, n.) as a linear homogeneous function of
the coordinates of y = (41, 75, - -, 7) and in accordance with the usual func-
tional notation it is natural to write ¥’ = A(y); it is usual to omit the brackets
and we therefore set in place of (6)

y = Ay.

The function or operator A when regarded as a single entity is called a
matrix; it is completely determined, relatively to the fundamental basis, when



4 MATRICES AND VECTORS [I]

the n? numbers a;; are known, in much the same way as the vector y is deter-
mined by its coordinates. We call the a,; the coordinates of A and write

Qi Gz *** Qin
az1 Gy -+ Ogn
) A=1---" ...
An1  Qng s Gnn
or, when convenient, A = || a;; ||. It should be noted that in a;; the first suffix

denotes the row in which the coordinate occurs while the second gives the
column.

If B = || bi; ]| is a second matrix, ¥ = A(By) is a vector which is a linear
vector homogeneous function of y, and from (6) we have

n n n
= 2 Gip E bpmi = 2 difni
=1

p=1 i=1

where
®) dig = D tighsi.
p=1
The matrix D = || d,;]| is called the product of A into B and is written AB.

The form of (8) should be carefully noted; in it each element of the ith row of 4
is multiplied into the corresponding element of the jth column of B and the
terms so formed are added. Since the rows and columns are not interchange-
able, AB is in general different from BA ; for instance

10 a bl _ a b ‘
2 1 lc d||  ||2a4+c¢c 26+d
a b 10 I e+ 20 b }
c d 2 1|  |lc+2d di
The product defined by (8) is associative; for if C = || ¢;; ||, the element in

the 7th row and jth column of (AB)C is

Zﬂ> (j aiybm>cqi = 2 Qip <2 bpchi>
P a=1

g=1 p=1 =1

and the term on the right is the (¢, j) coordinate of A(BC).
If we add the vectors Ay and By, we get a vector whose ¢th coordinate is

(cf. (6))

n n n
, o
N = 2 aim; + 2 bim; = Z/ CifMi

i=1 i=1 i=1



1 1.04] SCALAR MATRICES 5

where ¢;; = ai; + bi;. Hence Ay + By may be written Cy where C = || ¢y ||
We define C to be the sum of A and B and write C = A + B; two matrices
are then added by adding corresponding coordinates just as in the case of vec-
tors. It follows immediately from the definition of sum and product that

A(B+ C) = AB + AC, (B+ C)A = BA + CA,
Az + y) = Az + Ay,

, C bemg any matrices and z, ¥ vectors. Also, if k is a scalar and we set
A = ky’, then

y' =Ry

or in terms of the coordinates
"7;’ = 2 Raim;.
-

Hence kA may be interpreted as the matrix derived from A by multiplying
each coordinate of 4 by k.

On the analogy of the unit vectors e; we now define the fundamental unit
matrices e;; (i, j = 1,2, ---, n). Here e;; is the matrix whose coordinates are
all 0 except the one in the sth row and jth column whose value is 1. Corre-
sponding to the form Z&;e; for a vector we then have

(9) 4 = Zn: @ii€ij.

$,i=1

~

= RA(y) = A(ky)

Also from the definition of multiplication in (8)
(10) et = €x, g =0,  (j # p)

a set of relations which might have been made the basis of the definition of the
product of two matrices. It should be noted that it follows from the defini
tion of e;; that

(11) €56 = €3y €€k = 0 (j 7 k))
(12) Ae, = 2 A;i€i€r = E A 5kCs.

Hence the coordinates of Ae; are the coordinates of A that lie in the kth ecolumn.

1.04 Scalar matrices. If k is a scalar, the matrix K defined by Ky = ky
is called a scalar matriz; from (1) it follows that, if K = || Ri; ||, then ky; = k
(6=1,2 ---, n), ki =0 = j). The scalar matrix for which k¥ = 1 is called
the identity matrix of order n; it is commonly denoted by I but, for reasons



6 MATRICES AND VECTORS [I]
explained below, we shall here usually denote it by 1, or by 1, if it is desired
to indicate the order. When written at length we have

1 k

1 k
A convenient notation for the coordinates of the identity matrix was intro-

duced by Kronecker: if 8;; is the numerical function of the integers i, j
defined by

(13) 0 = 1, 6:;; =0 (@ # j),

then 1, = || 8;;|]. We shall use this Kronecker delta function in future with-
out further comment.

TurOREM 1. Every matriz is commutative with a scalar matriz.

Let k be the scalar and K = || k;;]| = || k4i; 1| the corresponding matrix.
If A = || a;;|| is any matrix, then from the definition of multiplication
KA = | 2 bt | = | 25 ko | = || R
P ¥4
AK = H D7 Gk || = H D kaisdsi || = | kas|
p P

so that AK = KA.

If & and h are two scalars and K, H the corresponding scalar matrices, then
K + H and KH are the scalar matrices corresponding to k& + % and kh. Hence
the one-to-one correspondence between scalars and scalar matrices is main-
tained under the operations of addition and multiplication, that is, the two
sets are simply isomorphic with respect to these operations. So long therefore
as we are concerned only with matrices of given order, there is no confusion
introduced if we replace each scalar by its corresponding scalar matrix, just
as in the theory of ordinary complex numbers, (g, b) = a + b7, the set of num-
bers of the form (a, 0) is identified with the real continuum. We shall there-
fore as a rule denote || 6;; || by 1 and || ks;; || by k.

1.05 Powers of a matrix; adjoint matrices. Positive integral powers of
A = || a;;|| are readily defined by induction; thus
A2 = A-A, A3 = 4-A2- - Am = A-Am— N\

With this definition it is clear that A74* = A+ ¢ for any positive integers r, s.
Negative powers, however, require more careful consideration.
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Let the determinant formed from the array of coefficients of a matrix be
denoted by
| A| = det. A

and let a4, be the cofactor of a,,in 4, so that from the properties of deter-
minapts

(14) E GipQpj = | A l 8ij = 2 O ipQpi (i=12 -, n).

» P

The matrix || ay; || is called the adjoint of A and is denoted by adj A. In this
notation (14) may be written

(15) A(adj A) = [A| = (adj 4)4,

so that a matrix and its adjoint are commutative.
If | A] = 0, we define A—! by

(16) A1 = | A | adj A.

Negative integral powers are then defined by A~" = (A~!)r; evidently A" =
(A")~'. We also set A° = 1, but it will appear later that a different inter-
pretation must be given when | A | = 0. Since AB-B~1A-!' = A-BB-1.4A-1 =
AA~' = 1, the reciprocal of the product 4B is

(AB)-! = B—14-1,

If A and B are matrices, the rule for multiplying determinants, when stated

in our notation, becomes

|AB| =|4]||B]
In particular, if AB = 1, then |A||B| = 1; hence, if | 4| = 0, there is no
matrix B such that AB = 1 or BA = 1. The reader should notice that, if k
is a scalar matrix of order n, then | k| = k"

If A =0, 4 is said to be singular; if A 0, A is regular or non-singular.
When A4 is regular, A~! is the only solution of AX = 1 or of XA = 1. For,
if AX = 1, then

A7l = A"1.1 = A714X = X.

If AX = 0, then either X = 0 or A is singular; for, if A~ exists,
0=A"1'4z = X.
If A* = A = 0, then A is said to be idempotent; for example e;; and Hé :;

are idempotent. A matrix a power of which is 0 is called nilpolent. If the
lowest power of A which is 0 is A, r is called the ¢ndez of A; for example, if A
= ey + ey + e, then

A? = e3 + eq, A? = ¢y, At =0,

so that the index of A in this case is 4.



