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Preface

Runtime verification is a recent direction in formal methods research, which is
complementary to such well-established formal verification methods as model
checking. Research in runtime verification deals with formal languages suitable
for expressing system properties that are checkable at run time; algorithms for
checking of formal properties over an execution trace; low-overhead means of
extracting information from the running system that is sufficient for checking
of the property. Applications of runtime verification technology include post-
deployment monitoring of system correctness and performance; construction of
formally specified test oracles; collection of statistics about system behavior,
among others.

The Workshop on Runtime Verification was started in 2001 and has been
held annually since then. The workshop was co-located with the Conference on
Computer-Aided Verification (CAV) in 2001-2003 and 2005-2006; and with the
European Joint Conferences on Theory and Practice of Software (ETAPS) in
2004. In 2007, the workshop was held on March 13, 2007 in Vancouver, British
Columbia, Canada, co-located to the Conference on Aspect-Oriented Software
Development (AOSD) in order to explore the emerging connections between the
two communities.

RV 2007 attracted contributions from the core area of runtime verification,
as well as related research areas such as testing, static and dynamic analysis of
programs, and aspect-oriented programming. The Program Committee selected
16 out of 29 submissions. Each submitted paper was reviewed by at least three
Program Committee members. Submitted papers were supplemented by an in-
vited talk given by Cindy Eisner (IBM Research Haifa). This volume contains
expanded versions of the presentations made at the workshop. The expanded
versions were again reviewed by the Program Committee.

September 2007 Oleg Sokolsky
Serdar Tasiran
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PSL for Runtime Verification:
Theory and Practice

Cindy Eisner

IBM Haifa Research Laboratory
eisner@il.ibm.com

Abstract. PSL is a property specification language recently standard-
ized as IEEE 1850T™-2005 PSL. It includes as its temporal layer a linear
temporal logic that enhances LTL with regular expressions and other use-
ful features. PSL and its precursor, Sugar, have been used by the IBM
Haifa Research Laboratory for formal verification of hardware since 1993,
and for informal (dynamic, simulation runtime) verification of hardware
since 1997. More recently both Sugar and PSL have been used for for-
mal, dynamic, and runtime verification of software. In this paper I will
introduce PSL and briefly touch on theoretical and practical issues in
the use of PSL for dynamic and runtime verification.

1 Introduction

PSL stands for Property Specification Language. Its temporal layer is a linear
temporal logic that enhances LTL [19] with regular expressions and other useful
features. PSL originated as the branching temporal logic Sugar at the IBM Haifa
Research Laboratory, and in October 2005 was standardized as IEEE 1850-2005
(PSL).

PSL has four layers: the Boolean, the modeling, the temporal, and the ver-
ification layers. The Boolean layer is used to define Boolean expressions. For
instance, a & b is a Boolean expression (in the Verilog flavor) indicating the
conjunction of a and b. The Boolean layer comes in five flavors, corresponding
to the hardware description languages VHDL, Verilog, SystemVerilog and Sys-
temC and to GDL, the language of IBM’s RuleBase model checker. Although
other flavors are not yet an official part of the language, it is very easy to define
new ones. See, for instance, [7], which describes a C flavor of PSL.

The flavor affects the syntax of the modeling layer as well, which is used to
describe the environment of the design under test. For instance, constraints on
the inputs would be described in the modeling layer. The modeling layer can also
be used to describe auxiliary signals (in software: variables) that are not part of
the design, but are used as part of the verification. For example, the modeling
layer statement assign a = b & c; lets the signal name a be used in place of
the Boolean expression b & c.

The temporal layer is the heart of the language, and consists of an LTL-based
temporal logic incorporating regular expressions. A formula over this temporal

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 1-8, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 C. Eisner

logic is called a PSL property. For example, always(req -> eventually! ack)
is a PSL property saying that whenever req is asserted, ack should be asserted
sometime in the future, and always {req ; ack ; grant} |=> {busy[*] ; done}
is a PSL property that says that whenever req is asserted followed by ack and
then by grant, busy should be asserted and stay so until done occurs. The tem-
poral layer also allows an elementary form of quantification, so that the property
foralli in {0:7}: always ((req & tag==i) -> eventually! (ack & tag==1))
says that whenever req is asserted, eventually an associated ack will occur, where
the association is indicated by a matching value of tag. Other features include a
clock operator that can be used to change the default view of time, and the abort
operator, described in Section 3 below.

The verification layer contains directives that tell the verification tool what
to do with a PSL property: e.g., should it be asserted (checked), or should
it be assumed, or perhaps used as the basis for coverage measurement? The
verification layer also provides a way to group sets of directives into a vunit, or
verification unit, which can be referred to by name in the verification tool.

PSL is good for hardware verification, and various tools for both formal and
dynamic hardware verification using PSL are available from companies such as
IBM, Cadence, Mentor graphics, etc. PSL is also good for software verification,
and PSL or its precursor, Sugar, has been used internally at IBM for software
model checking [4][10][11], as well as within a C++ based simulation environ-
ment [9]. More recently, it has also been used externally for runtime verification
of software [7].

Intuitively, dynamic and runtime verification have a linear view of time. In
the remainder of this paper, I will explain why the move from branching time
Sugar to linear time PSL, a big deal in theory, was not a problem in practice and
required no modification to our runtime simulation checker generator FoCs (nor
to our model checker RuleBase). I will present the truncated semantics that were
developed to support non-maximal finite paths as seen in dynamic and runtime
verification, and show how they are related to the support of resets in a reactive
system, and finally I will discuss the FoCs approach to the issue of how time
“ticks” in software.

2 Masking Branching vs. Linear Time

In branching time logics such as CTL [8] and PSL’s precursor, Sugar, time is
branching. That is, the semantics are given with respect to a state in the model,
and every possible future of that state is considered. In linear time logics such
as LTL [19] and PSL, time is linear. That is, the semantics are given with
respect to set of ordered states (a path) in the model, and thus every state has a
single successor. In theory, this is a very big deal. The complexity of branching
time model checking is better than that of linear time model checking [21], the
expressive power of the two is incomparable [17], and of course, only linear time
makes sense for dynamic and runtime verification.
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In practice, however, the issue is not such an important one. The overlap
between linear and branching time is a large one, and the vast majority of
properties used in practice belong to the overlap. Furthermore, there is a simple
syntactic test that can be used to confirm that a syntactically similar CTL/LTL
formula pair is equivalent [17]. As an example, the test confirms that the CTL
formula AG(p — AXgq) is equivalent to the LTL formula G(p — Xgq). The test
does not work for every equivalent pair; for example, it does not confirm that the
CTL formula AG(—p — AXq) is equivalent to the LTL formula G((Xq) — p),
even though the pair are equivalent. However, it works in enough cases to make
it practically useful: for instance, the simple subset of PSL [5][12] obeys the test.

For this reason, the move from the original CTL-based semantics of Sugar
to the current, LTL-based semantics of PSL was not a major issue in practice,
neither for IBM’s model checker RuleBase [20] nor for its dynamic verification
tool FoCs [1]. In both cases, the move is masked by the Sugar compiler. For
RuleBase, it checks whether a (linear) PSL formula passes the syntactic test
of [17] and if so, uses the established (branching) algorithms. For FoCs, the tool
has always used a syntactic test similar to that of [17] to weed out branching
formulas that cannot be checked dynamically, and the same test weeds out linear
formulas for which the dynamic checking is not trivial.

3 Finite Paths and the Truncated Semantics

In the sequel, I will use PSL syntax corresponding to the basic LTL operators,
as follows: always is equivalent to the LTL operator G, and the PSL operators
eventually!, until, until!, next and next! correspond to the LTL operators
F, W, U, X and X!, respectively.

Traditionally, LTL semantics over finite paths [18] are defined for maximal
paths in the model. That is, if we evaluate a formula over a finite path under
traditional LTL finite semantics, it is because the last state of the path has no
successor in the model. For a long time, finite paths on non-maximal paths were
treated in an ad-hoc manner — see [6], for instance. In [14], we considered in
detail the problem of reasoning with temporal logic on non-maximal paths.

A truncated path is a finite, not necessarily maximal path. Truncated paths
are seen by incomplete formal methods, such as bounded model checking, and
also by dynamic and runtime verification (at any point before the program ends
we have seen a partial, non-maximal path). In the truncated semantics, there
are three views of a finite path. The weak view takes a lenient view of truncated
paths — a property holds even if there is doubt about the status of the property
on the full path. The strong view is a strict view of truncated paths — a property
does not hold if there is doubt about the status of the property on the full path.
The neutral view of a truncated path is simply the traditional semantics for a
maximal path.

For example, on a finite path such that p holds at every state on the path,
the property always p might or might not hold on the full path: if it turns out
that the truncated path continues with a p at every state, our property will hold
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on the full path, but if there is even one future state with no p, it will not hold.
Thus, the property holds in the weak view, and does not hold in the strong view.
It holds in the neutral view, because always p holds on our path if we consider
it to be maximal.

As another example, consider a finite path such that ¢ holds at no state on the
path. The property eventually! q might or might not hold on the full path: if
there is a future g, the property holds, otherwise it does not. Thus, eventually!
q holds in the weak view, and does not hold in the strong view. It does not hold
in the neutral view, because eventually! q does not hold on such a path if we
consider it to be maximal. If ¢ does hold for some state on the path, then the
property holds in the neutral view, and there is no doubt that it will hold as
well on any continuation of the path. Thus, on such a path the property holds
in the weak, neutral and strong views.

Consider now a finite path on which p holds at states 2, 4 and 20, and ¢
holds at state 15. As with our previous examples, the property always (p —->
eventually! q) might or might not hold on the full path, depending on how
the truncated path continues. Thus the property holds in the weak view and
does not hold in the strong view. It does not hold in the neutral view, because
always (p -> eventually! q) does not hold on our path if we consider it to
be maximal — the p that holds at state 20 is missing a q. Even if there were such
a future q, for instance if p held at states 2, 4 and 20 and q held at states 15 and
25 — then there still would be doubt about whether the property holds on the
full path, because there might be a future p that does not see an appropriate q.
Thus, our property would still hold in the weak view and not hold in the strong
view. However, it does hold in the neutral view on our new path, because the
neutral semantics do not worry about possible futures — they consider the path
to be maximal.

The weak view can be understood as a weakening of all operators (assum-
ing negation-normal form) [13], and the strong view can be understood as a
strengthening of all operators (under the same assumption). Thus, it is easy
to see that eventually! ¢ holds weakly on any path for any ¢ (including
false): eventually! ¢ is equivalent to true until! ¢. Weakening this gives
true until ¢, which holds on any path for any ¢. Similarly, we can show that
always ¢ does not hold strongly on any path for any ¢ (including true), because
always ¢ is equivalent to ¢ until false. Strengthening that gives ¢ until!
false, which holds on no path for no ¢.

In practice, very few formulas hold strongly on any path, because most for-
mulas begin with the always operator. Thus, the weak view of truncated paths
is most useful in practice. However, the strong view is dual to the weak, and
giving it up would result in a logic not closed under negation.

On an infinite path, the weak, neutral and strong views coincide [14]. Never-
theless, the truncated semantics can be useful in the context of infinite paths,
because an infinite path may contain finite, non-maximal segments. They can be
useful in the context of finite maximal paths for the same reason. For instance,
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a hardware reset or a software event such as “clear form”, “start over”, or “new
query” may partition a path into two parts: a finite, truncated part until the
reset, or software event, and a possibly infinite, possibly maximal part (depending
on whether or not the original path was maximal) afterwards. The PSL abort
operator truncates a path and moves to the weak view. Thus, the property
always ( abort reset) partitions the path into segments at every occurrence
of reset (discarding the states on which reset occurs). The property ¢ must
hold neutrally on the final segment, and weakly on the remaining segments (each
of which was followed in the original path by a state on which reset held).

The point of the abort operator can be best appreciated by comparing it to
the until operator. Both of the following properties:

(always (p — > eventually! q)) abort reset (1)

(p — > eventually! q) until reset (2)

need (p -> eventually! q) to hold up until reset holds. However, they differ
with respect to what happens at that point. Consider a path 7 of length 20 such
that p holds at states 2 and 10, q holds at state 4, and reset holds at state 15.
Property 1 holds on such a path, because the abort operator truncates the path
at the occurrence of reset and takes us to the weak view. Since the sub-property
(always (p -> eventually! q)) holds weakly on the truncated path, Property 1
holds on the original path. However, Property 2 does not hold on path 7, because
sub-property (p -> eventually! q) does not hold at state 10.

The behavior of the abort operator is very easy to describe in an informal
manner, but very difficult to formalize. Our first try, the abort semantics [14],
defined simply

w = ¢ abort b <=
either w = ¢ or
there exist j < |w| and word w’ such that w’ = band w7~ 1w’ |= ¢

This looks intuitive, but turns out not to be what we wanted. Consider the prop-
erty (eventually! false) abort b on a path where b occurs at some point.
We want the property to hold on such a path, because we want eventually!
false to hold in the weak view on a finite path. To see this, recall that
eventually! false is equivalent to true until! false. If we weaken the
until! operator we get true until false which holds on any path. However,
looking back to the proposed semantics, there is no w’ we can choose that will
give us what we want. Others [3] were more successful, but ended up with a
semantics that required intricate manipulations of two contexts within the se-
mantics of the existing LTL operators.

We have since presented two simple and elegant formulations. The original
truncated semantics, presented in [14], directly defines semantics for each of
the three views (weak, neutral and strong). The result is a semantics that is
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equivalent to the reset semantics of [3], but whose presentation is much cleaner
and easier to grasp. The T, L approach to the truncated semantics, presented
in [15], takes another tack, and folds the three views into an equivalent but more
compact representation. It does so by adding two new letters, T and L, to the
alphabet, such that everything holds on T, including false, and nothing holds
on L, including true. With these two new letters, the original formulation of the
semantics presented above works because we can choose a w’ consisting entirely
of the letter T. While the T, | approach uses a slightly more cryptic formulation
than the original truncated semantics, we have found it useful in characterizing
the relation between the weak and strong views, as described in [13].

4 The FoCs Approach to the Ticking of Time

PSL does not dictate how time ticks. The formal semantics (see for instance
Appendix B of [12]) is based on a sequence of states, but how those states are
derived from the hardware or software under verification is not defined. This is
good news for software, because it means that the formal semantics can be used
as is. However, it does not provide any practical answers.

FoCs is a tool that takes PSL properties and translates them into monitors
that allow the use of PSL in event-based software. Originally, FoCs was designed
for hardware simulations [1], but it can work with other event-based software as
well. In the FoCs approach, the responsibility for time belongs to the applica-
tion. If the user has embedded a PSL property in C (or other) code, FoCs will
translate the property into a state machine embedded in the code at the loca-
tion where the property originally appeared. Then, time is considered to have
ticked when the state machine is reached at runtime. The FoCs approach is a
generic solution for any language, but of course it is not a general solution for
any application, in the case that some other definition of the ticking of time is
desired.
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