Oleg Sokolsky
Serdar Tasiran (Eds.)

Runtime
Verification

7th International Workshop, RV 2007
Vancover, Canada, March 2007
Revised Selected Papers

LNCS 4839

@ Springer

Oleg Sokolsky Serdar Tagiran (Eds.)

Runtime
Verification

7th International Workshop, RV 2007
Vancover, Canada, March 13, 2007
Revised Selected Papers

@ Springer

Volume Editors

Oleg Sokolsky

University of Pennsylvania

Department of Computer and Information Science
3330 Walnut Street, Philadelphia, PA, USA
E-mail: sokolsky @cis.upenn.edu

Serdar Tasiran

Kog University

College of Engineering

Rumeli Feneri Yolu, Sariyer, 34450, Istanbul, Turkey
E-mail: stasiran@ku.edu.tr

Library of Congress Control Number: 2007941510

CR Subject Classification (1998): D.2, D.3, F.3, K.6
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-77394-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77394-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12208111 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4839

Preface

Runtime verification is a recent direction in formal methods research, which is
complementary to such well-established formal verification methods as model
checking. Research in runtime verification deals with formal languages suitable
for expressing system properties that are checkable at run time; algorithms for
checking of formal properties over an execution trace; low-overhead means of
extracting information from the running system that is sufficient for checking
of the property. Applications of runtime verification technology include post-
deployment monitoring of system correctness and performance; construction of
formally specified test oracles; collection of statistics about system behavior,
among others.

The Workshop on Runtime Verification was started in 2001 and has been
held annually since then. The workshop was co-located with the Conference on
Computer-Aided Verification (CAV) in 2001-2003 and 2005-2006; and with the
European Joint Conferences on Theory and Practice of Software (ETAPS) in
2004. In 2007, the workshop was held on March 13, 2007 in Vancouver, British
Columbia, Canada, co-located to the Conference on Aspect-Oriented Software
Development (AOSD) in order to explore the emerging connections between the
two communities.

RV 2007 attracted contributions from the core area of runtime verification,
as well as related research areas such as testing, static and dynamic analysis of
programs, and aspect-oriented programming. The Program Committee selected
16 out of 29 submissions. Each submitted paper was reviewed by at least three
Program Committee members. Submitted papers were supplemented by an in-
vited talk given by Cindy Eisner (IBM Research Haifa). This volume contains
expanded versions of the presentations made at the workshop. The expanded
versions were again reviewed by the Program Committee.

September 2007 Oleg Sokolsky
Serdar Tasiran

Conference Organization

Program Committee

Mehmet Aksit, University of Twente, The Netherlands

Howard Barringer, University of Manchester, UK

Saddek Bensalem, VERIMAG Laboratory, France

Eric Bodden, McGill Univeristy, Canada

Bernd Finkbeiner, Saarland University, Germany

Cormac Flanagan, University of California, Santa Cruz, USA
Vijay Garg, University of Texas, Austin, USA

Klaus Havelund, NASA Jet Propulsion Laboratory /Columbus Technologies, USA
Gerard Holzmann, NASA Jet Propulsion Laboratory, USA
Moonzoo Kim, KAIST, Korea

Martin Leucker, Technical University of Munich, Germany

Oege de Moor, Oxford University, UK

Klaus Ostermann, Darmstadt University of Technology, Germany
Shaz Qadeer, Microsoft Research

Grigore Rosu, University of Illinois, Urbana-Champaign, USA
Henny Sipma, Stanford University, USA

Oleg Sokolsky (Co-chair), University of Pennsylvania, USA

Scott Stoller, State University of New York, Stony Brook, USA
Mario Siidholt, Ecole des Mines de Nantes-INRIA, France

Serdar Tasiran (Co-chair), Koc University, Turkey

Steering Committee

Klaus Havelund, NASA Jet Propulsion Laboratory, USA
Gerard Holzmann, NASA Jet Propulsion Laboratory, USA
Insup Lee, University of Pennsylvania, USA

Grigore Rosu, University of Illinois, Urbana-Champaign, USA

External Reviewers

Andreas Bauer
Selma Ikiz

David Rydeheard
Christian Schallhart

Lecture Notes in Computer Science

Sublibrary 2: Programming and Software Engineering

For information about Vols. 1- 4218
please contact your bookseller or Springer

Vol. 4849: M. Winckler, H. Johnson, P. Palanque (Eds.),
Task Models and Diagrams for User Interface Design.
XIII, 299 pages. 2007.

Vol. 4839: O. Sokolsky, S. Tagiran (Eds.), Runtime Ver-
ification. VIII, 215 pages. 2007.

Vol. 4834: R. Cerqueira, R.H. Campbell (Eds.), Middle-
ware 2007. XIII, 451 pages. 2007.

Vol. 4829: M. Lumpe, W. Vanderperren (Eds.), Software
Composition. VIII, 281 pages. 2007.

Vol. 4824: A. Paschke, Y. Biletskiy (Eds.), Advances
in Rule Interchange and Applications. XIII, 243 pages.
2007.

Vol. 4807: Z. Shao (Ed.), Programming Languages and
Systems. XI, 431 pages. 2007.

Vol. 4799: A. Holzinger (Ed.), HCI and Usability for
Medicine and Health Care. XVI, 458 pages. 2007.

Vol. 4789: M. Butler, M.G. Hinchey, M.M. Larrondo-
Petrie (Eds.), Formal Methods and Software Engineer-
ing. VIII, 387 pages. 2007.

Vol. 4767: F. Arbab, M. Sirjani (Eds.), International Sym-
posium on Fundamentals of Software Engineering. XIII,
450 pages. 2007.

Vol. 4764: P. Abrahamsson, N. Baddoo, T. Margaria,
R. Messnarz (Eds.), Software Process Improvement. XI,
225 pages. 2007.

Vol. 4762: K.S. Namjoshi, T. Yoneda, T. Higashino, Y.
Okamura (Eds.), Automated Technology for Verification
and Analysis. XIV, 566 pages. 2007.

Vol. 4758: F. Oquendo (Ed.), Software Architecture.
XVI, 340 pages. 2007.

Vol. 4757: F. Cappello, T. Herault, J. Dongarra (Eds.),
Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface. XVI, 396 pages. 2007.

Vol. 4753: E. Duval, R. Klamma, M. Wolpers (Eds.),
Creating New Learning Experiences on a Global Scale.
XII, 518 pages. 2007.

Vol. 4749: B.J. Kriamer, K.-J. Lin, P. Narasimhan (Eds.),
Service-Oriented Computing — ICSOC 2007. XIX, 629
pages. 2007.

Vol. 4748: K. Wolter (Ed.), Formal Methods and Stochas-
tic Models for Performance Evaluation. X, 301 pages.
2007.

Vol. 4741: C. Bessiere (Ed.), Principles and Practice of
Constraint Programming — CP 2007. XV, 890 pages.
2007.

Vol. 4735: G. Engels, B. Opdyke, D.C. Schmidt, F. Weil
(Eds.), Model Driven Engineering Languages and Sys-
tems. XV, 698 pages. 2007.

Vol. 4716: B. Meyer, M. Joseph (Eds.), Software Engi-
neering Approaches for Offshore and Outsourced Devel-
opment. X, 201 pages. 2007.

Vol. 4680: F. Saglietti, N. Oster (Eds.), Computer Safety,
Reliability, and Security. XV, 548 pages. 2007.

Vol. 4670: V. Dahl, I. Niemeli (Eds.), Logic Program-
ming. XII, 470 pages. 2007.

Vol. 4652: D. Georgakopoulos, N. Ritter, B. Benatal-
lah, C. Zirpins, G. Feuerlicht, M. Schoenherr, H.R.
Motahari-Nezhad (Eds.), Service-Oriented Computing
ICSOC 2006. XVI, 201 pages. 2007.

Vol. 4640: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development IV. IX, 191
pages. 2007.

Vol. 4634: H. Riis Nielson, G. Filé (Eds.), Static Analy-
sis. X1, 469 pages. 2007.

Vol. 4620: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development III. IX, 201
pages. 2007.

Vol. 4615: R. de Lemos, C. Gacek, A. Romanovsky
(Eds.), Architecting Dependable Systems IV. XIV, 435
pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4609: E. Emst (Ed.), ECOOP 2007 - Object-
Oriented Programming. XIII, 625 pages. 2007.

Vol. 4608: H.W. Schmidt, I. Crnkovié, G.T. Heineman,
J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.), Integrated For-
mal Methods. IX, 660 pages. 2007.

Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-
Focused Software Process Improvement. XII, 414 pages.
2007.

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
XI, 375 pages. 2007.

Vol. 4556: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part III. XXII, 1020
pages. 2007.

Vol. 4555: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part IT. XXII, 1066 pages.
2007.

Vol. 4554: C. Stephanidis (Ed.), Universal Acess in Hu-
man Computer Interaction, Part I. XXII, 1054 pages.
2007.

Vol. 4553: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part IV. XXIV, 1225 pages. 2007.

Vol. 4552: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part ITI. XXI, 1038 pages. 2007.

Vol. 4551: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part II. XXITII, 1253 pages. 2007.

Vol. 4550: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I. XXIII, 1240 pages. 2007.

Vol. 4542: P. Sawyer, B. Paech, P. Heymans (Eds.), Re-
quirements Engineering: Foundation for Software Qual-
ity. IX, 384 pages. 2007.

Vol. 4536: G. Concas, E. Damiani, M. Scotto, G. Succi
(Eds.), Agile Processes in Software Engineering and Ex-
treme Programming. XV, 276 pages. 2007.

Vol. 4530: D.H. Akehurst, R. Vogel, R.F. Paige (Eds.),
Model Driven Architecture - Foundations and Applica-
tions. X, 219 pages. 2007.

Vol. 4523: Y.-H. Lee, H.-N. Kim, J. Kim, Y.W. Park,
L.T. Yang, S.W. Kim (Eds.), Embedded Software and
Systems. XIX, 829 pages. 2007.

Vol. 4498: N. Abdennahder, F. Kordon (Eds.), Reliable
Software Technologies - Ada-Europe 2007. XII, 247
pages. 2007.

Vol. 4486: M. Bernardo, J. Hillston (Eds.), Formal Meth-
ods for Performance Evaluation. VII, 469 pages. 2007.

Vol. 4470: Q. Wang, D. Pfahl, D.M. Raffo (Eds.), Soft-
ware Process Dynamics and Agility. XI, 346 pages. 2007.

Vol. 4468: M.M. Bonsangue, E.B. Johnsen (Eds.), For-
mal Methods for Open Object-Based Distributed Sys-
tems. X, 317 pages. 2007.

Vol. 4467: A.L. Murphy, J. Vitek (Eds.), Coordination
Models and Languages. X, 325 pages. 2007.

Vol. 4454: Y. Gurevich, B. Meyer (Eds.), Tests and
Proofs. IX, 217 pages. 2007.

Vol. 4444: T. Reps, M. Sagiv, J. Bauer (Eds.), Program
Analysis and Compilation, Theory and Practice. X, 361
pages. 2007.

Vol. 4440: B. Liblit, Cooperative Bug Isolation. XV, 101
pages. 2007.

Vol. 4408: R. Choren, A. Garcia, H. Giese, H.-f. Leung,
C. Lucena, A. Romanovsky (Eds.), Software Engineer-
ing for Multi-Agent Systems V. XII, 233 pages. 2007.

Vol. 4406: W. De Meuter (Ed.), Advances in Smalltalk.
VII, 157 pages. 2007.

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol. 4401: N. Guelfi, D. Buchs (Eds.), Rapid Integra-
tion of Software Engineering Techniques. IX, 177 pages.
2007.

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
XI, 355 pages. 2007.

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XII, 235 pages. 2007.

Vol. 4379: M. Siidholt, C. Consel (Eds.), Object-Oriented
Technology. VIII, 157 pages. 2007.

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. XI, 332 pages. 2007.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol. 4350: M. Clavel, F. Durién, S. Eker, P. Lincoln, N.
Marti-Oliet, J. Meseguer, C. Talcott, All About Maude
- A High-Performance Logical Framework. XXII, 797
pages. 2007.

Vol. 4348: S. Tucker Taft, R.A. Duff, R.L. Brukardt, E.
Plodereder, P. Leroy, Ada 2005 Reference Manual. XXII,
765 pages. 2006.

Vol. 4346: L. Brim, B.R. Haverkort, M. Leucker, J. van
de Pol (Eds.), Formal Methods: Applications and Tech-
nology. X, 363 pages. 2007.

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIII, 317 pages. 2007.

Vol. 4336: V.R. Basili, H.D. Rombach, K. Schneider,
B. Kitchenham, D. Pfahl, R.W. Selby (Eds.), Empirical
Software Engineering Issues. XVII, 193 pages. 2007.

Vol. 4326: S. Gobel, R. Malkewitz, 1. Iurgel (Eds.), Tech-
nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4323: G. Doherty, A. Blandford (Eds.), Interactive
Systems. XI, 269 pages. 2007.

Vol. 4322: F. Kordon, J. Sztipanovits (Eds.), Reliable
Systems on Unreliable Networked Platforms. XIV, 317
pages. 2007.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-
gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4294: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing — ICSOC 2006. XIX, 653 pages.
2006.

Vol. 4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. XI, 423 pages. 2006.

Vol. 4262: K. Havelund, M. Niiiez, G. Rosu, B. Wolff
(Eds.), Formal Approaches to Software Testing and Run-
time Verification. VIII, 255 pages. 2006.

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

Vol. 4257: 1. Richardson, P. Runeson, R. Messnarz
(Eds.), Software Process Improvement. XI, 219 pages.
2006.

Vol. 4242: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development II. IX, 289
pages. 2006.

Vol. 4229: E. Najm, J.-E. Pradat-Peyre, V.V. Donzeau-
Gouge (Eds.), Formal Techniques for Networked and
Distributed Systems - FORTE 2006. X, 486 pages. 2006.

Vol. 4227: W. Nejdl, K. Tochtermann (Eds.), Innovative
Approaches for Learning and Knowledge Sharing. X VII,
721 pages. 2006.

Table of Contents

Invited Paper

PSL for Runtime Verification: Theory and Practice................... 1
Cindy Fisner

AOP-Related Papers

On the Semantics of Matching Trace Monitoring Patterns 9
Pavel Avgustinov, Julian Tibble, and Oege de Moor

Collaborative Runtime Verification with Tracematches................ 22
Eric Bodden, Laurie Hendren, Patrick Lam, Ondrej Lhotdk, and
Nomair A. Naeem

Static and Dynamic Detection of Behavioral Conflicts Between
A DO - o o ot 38
Pascal Durr, Lodewijk Bergmans, and Mehmet Aksit

Escaping with Future Variables in HALO 51
Charlotte Herzeel, Kris Gybels, and Pascal Costanza

Runtime Verification of Interactions: From MSCs to Aspects 63
Ingolf H. Kriiger, Michael Meisinger, and Massimiliano Menarini

Towards a Tool for Generating Aspects from MEDL and PEDL
Specifications for Runtime Verification.............................. 75
Omar Ochoa, Irbis Gallegos, Steve Roach, and Ann Gates

ARVE: Aspect-Oriented Runtime Verification Environment............ 87
Hiromasa Shin, Yusuke Endoh, and Yoshio Kataoka

Core Runtime Verification Papers

From Runtime Verification to Evolvable Systems 97
Howard Barringer, Dov Gabbay, and David Rydeheard

Rule Systems for Run-Time Monitoring: From EAGLE to RULER 111
Howard Barringer, David Rydeheard, and Klaus Havelund

The Good, the Bad, and the Ugly, But How Ugly Is Ugly? 126
Andreas Bauer, Martin Leucker, and Christian Schallhart

Translation Validation of System Abstractions 139
Jan Olaf Blech, Ina Schaefer, and Arnd Poetzsch-Heffter

VIII Table of Contents

Instrumentation of Open-Source Software for Intrusion Detection 151
William Mahoney and William Sousan

Statistical Runtime Checking of Probabilistic Properties 164
Usa Sammapun, Insup Lee, Oleg Sokolsky, and John Regehr

Temporal Assertions with Parametrised Propositions 176
Volker Stolz

Rollback AtOmiCityot 188
Serdar Tasiran and Tayfun Elmas

Runtime Checking for Program Verification 202
Karen Zee, Viktor Kuncak, Michael Taylor, and Martin Rinard

Author Index e 215

PSL for Runtime Verification:
Theory and Practice

Cindy Eisner

IBM Haifa Research Laboratory
eisner@il.ibm.com

Abstract. PSL is a property specification language recently standard-
ized as IEEE 1850T™-2005 PSL. It includes as its temporal layer a linear
temporal logic that enhances LTL with regular expressions and other use-
ful features. PSL and its precursor, Sugar, have been used by the IBM
Haifa Research Laboratory for formal verification of hardware since 1993,
and for informal (dynamic, simulation runtime) verification of hardware
since 1997. More recently both Sugar and PSL have been used for for-
mal, dynamic, and runtime verification of software. In this paper I will
introduce PSL and briefly touch on theoretical and practical issues in
the use of PSL for dynamic and runtime verification.

1 Introduction

PSL stands for Property Specification Language. Its temporal layer is a linear
temporal logic that enhances LTL [19] with regular expressions and other useful
features. PSL originated as the branching temporal logic Sugar at the IBM Haifa
Research Laboratory, and in October 2005 was standardized as IEEE 1850-2005
(PSL).

PSL has four layers: the Boolean, the modeling, the temporal, and the ver-
ification layers. The Boolean layer is used to define Boolean expressions. For
instance, a & b is a Boolean expression (in the Verilog flavor) indicating the
conjunction of a and b. The Boolean layer comes in five flavors, corresponding
to the hardware description languages VHDL, Verilog, SystemVerilog and Sys-
temC and to GDL, the language of IBM’s RuleBase model checker. Although
other flavors are not yet an official part of the language, it is very easy to define
new ones. See, for instance, [7], which describes a C flavor of PSL.

The flavor affects the syntax of the modeling layer as well, which is used to
describe the environment of the design under test. For instance, constraints on
the inputs would be described in the modeling layer. The modeling layer can also
be used to describe auxiliary signals (in software: variables) that are not part of
the design, but are used as part of the verification. For example, the modeling
layer statement assign a = b & c; lets the signal name a be used in place of
the Boolean expression b & c.

The temporal layer is the heart of the language, and consists of an LTL-based
temporal logic incorporating regular expressions. A formula over this temporal

O. Sokolsky and S. Tasiran (Eds.): RV 2007, LNCS 4839, pp. 1-8, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 C. Eisner

logic is called a PSL property. For example, always(req -> eventually! ack)
is a PSL property saying that whenever req is asserted, ack should be asserted
sometime in the future, and always {req ; ack ; grant} |=> {busy[*] ; done}
is a PSL property that says that whenever req is asserted followed by ack and
then by grant, busy should be asserted and stay so until done occurs. The tem-
poral layer also allows an elementary form of quantification, so that the property
foralli in {0:7}: always ((req & tag==i) -> eventually! (ack & tag==1))
says that whenever req is asserted, eventually an associated ack will occur, where
the association is indicated by a matching value of tag. Other features include a
clock operator that can be used to change the default view of time, and the abort
operator, described in Section 3 below.

The verification layer contains directives that tell the verification tool what
to do with a PSL property: e.g., should it be asserted (checked), or should
it be assumed, or perhaps used as the basis for coverage measurement? The
verification layer also provides a way to group sets of directives into a vunit, or
verification unit, which can be referred to by name in the verification tool.

PSL is good for hardware verification, and various tools for both formal and
dynamic hardware verification using PSL are available from companies such as
IBM, Cadence, Mentor graphics, etc. PSL is also good for software verification,
and PSL or its precursor, Sugar, has been used internally at IBM for software
model checking [4][10][11], as well as within a C++ based simulation environ-
ment [9]. More recently, it has also been used externally for runtime verification
of software [7].

Intuitively, dynamic and runtime verification have a linear view of time. In
the remainder of this paper, I will explain why the move from branching time
Sugar to linear time PSL, a big deal in theory, was not a problem in practice and
required no modification to our runtime simulation checker generator FoCs (nor
to our model checker RuleBase). I will present the truncated semantics that were
developed to support non-maximal finite paths as seen in dynamic and runtime
verification, and show how they are related to the support of resets in a reactive
system, and finally I will discuss the FoCs approach to the issue of how time
“ticks” in software.

2 Masking Branching vs. Linear Time

In branching time logics such as CTL [8] and PSL’s precursor, Sugar, time is
branching. That is, the semantics are given with respect to a state in the model,
and every possible future of that state is considered. In linear time logics such
as LTL [19] and PSL, time is linear. That is, the semantics are given with
respect to set of ordered states (a path) in the model, and thus every state has a
single successor. In theory, this is a very big deal. The complexity of branching
time model checking is better than that of linear time model checking [21], the
expressive power of the two is incomparable [17], and of course, only linear time
makes sense for dynamic and runtime verification.

PSL for Runtime Verification: Theory and Practice 3

In practice, however, the issue is not such an important one. The overlap
between linear and branching time is a large one, and the vast majority of
properties used in practice belong to the overlap. Furthermore, there is a simple
syntactic test that can be used to confirm that a syntactically similar CTL/LTL
formula pair is equivalent [17]. As an example, the test confirms that the CTL
formula AG(p — AXgq) is equivalent to the LTL formula G(p — Xgq). The test
does not work for every equivalent pair; for example, it does not confirm that the
CTL formula AG(—p — AXq) is equivalent to the LTL formula G((Xq) — p),
even though the pair are equivalent. However, it works in enough cases to make
it practically useful: for instance, the simple subset of PSL [5][12] obeys the test.

For this reason, the move from the original CTL-based semantics of Sugar
to the current, LTL-based semantics of PSL was not a major issue in practice,
neither for IBM’s model checker RuleBase [20] nor for its dynamic verification
tool FoCs [1]. In both cases, the move is masked by the Sugar compiler. For
RuleBase, it checks whether a (linear) PSL formula passes the syntactic test
of [17] and if so, uses the established (branching) algorithms. For FoCs, the tool
has always used a syntactic test similar to that of [17] to weed out branching
formulas that cannot be checked dynamically, and the same test weeds out linear
formulas for which the dynamic checking is not trivial.

3 Finite Paths and the Truncated Semantics

In the sequel, I will use PSL syntax corresponding to the basic LTL operators,
as follows: always is equivalent to the LTL operator G, and the PSL operators
eventually!, until, until!, next and next! correspond to the LTL operators
F, W, U, X and X!, respectively.

Traditionally, LTL semantics over finite paths [18] are defined for maximal
paths in the model. That is, if we evaluate a formula over a finite path under
traditional LTL finite semantics, it is because the last state of the path has no
successor in the model. For a long time, finite paths on non-maximal paths were
treated in an ad-hoc manner — see [6], for instance. In [14], we considered in
detail the problem of reasoning with temporal logic on non-maximal paths.

A truncated path is a finite, not necessarily maximal path. Truncated paths
are seen by incomplete formal methods, such as bounded model checking, and
also by dynamic and runtime verification (at any point before the program ends
we have seen a partial, non-maximal path). In the truncated semantics, there
are three views of a finite path. The weak view takes a lenient view of truncated
paths — a property holds even if there is doubt about the status of the property
on the full path. The strong view is a strict view of truncated paths — a property
does not hold if there is doubt about the status of the property on the full path.
The neutral view of a truncated path is simply the traditional semantics for a
maximal path.

For example, on a finite path such that p holds at every state on the path,
the property always p might or might not hold on the full path: if it turns out
that the truncated path continues with a p at every state, our property will hold

4 C. Eisner

on the full path, but if there is even one future state with no p, it will not hold.
Thus, the property holds in the weak view, and does not hold in the strong view.
It holds in the neutral view, because always p holds on our path if we consider
it to be maximal.

As another example, consider a finite path such that ¢ holds at no state on the
path. The property eventually! q might or might not hold on the full path: if
there is a future g, the property holds, otherwise it does not. Thus, eventually!
q holds in the weak view, and does not hold in the strong view. It does not hold
in the neutral view, because eventually! q does not hold on such a path if we
consider it to be maximal. If ¢ does hold for some state on the path, then the
property holds in the neutral view, and there is no doubt that it will hold as
well on any continuation of the path. Thus, on such a path the property holds
in the weak, neutral and strong views.

Consider now a finite path on which p holds at states 2, 4 and 20, and ¢
holds at state 15. As with our previous examples, the property always (p —->
eventually! q) might or might not hold on the full path, depending on how
the truncated path continues. Thus the property holds in the weak view and
does not hold in the strong view. It does not hold in the neutral view, because
always (p -> eventually! q) does not hold on our path if we consider it to
be maximal — the p that holds at state 20 is missing a q. Even if there were such
a future q, for instance if p held at states 2, 4 and 20 and q held at states 15 and
25 — then there still would be doubt about whether the property holds on the
full path, because there might be a future p that does not see an appropriate q.
Thus, our property would still hold in the weak view and not hold in the strong
view. However, it does hold in the neutral view on our new path, because the
neutral semantics do not worry about possible futures — they consider the path
to be maximal.

The weak view can be understood as a weakening of all operators (assum-
ing negation-normal form) [13], and the strong view can be understood as a
strengthening of all operators (under the same assumption). Thus, it is easy
to see that eventually! ¢ holds weakly on any path for any ¢ (including
false): eventually! ¢ is equivalent to true until! ¢. Weakening this gives
true until ¢, which holds on any path for any ¢. Similarly, we can show that
always ¢ does not hold strongly on any path for any ¢ (including true), because
always ¢ is equivalent to ¢ until false. Strengthening that gives ¢ until!
false, which holds on no path for no ¢.

In practice, very few formulas hold strongly on any path, because most for-
mulas begin with the always operator. Thus, the weak view of truncated paths
is most useful in practice. However, the strong view is dual to the weak, and
giving it up would result in a logic not closed under negation.

On an infinite path, the weak, neutral and strong views coincide [14]. Never-
theless, the truncated semantics can be useful in the context of infinite paths,
because an infinite path may contain finite, non-maximal segments. They can be
useful in the context of finite maximal paths for the same reason. For instance,

PSL for Runtime Verification: Theory and Practice 5

a hardware reset or a software event such as “clear form”, “start over”, or “new
query” may partition a path into two parts: a finite, truncated part until the
reset, or software event, and a possibly infinite, possibly maximal part (depending
on whether or not the original path was maximal) afterwards. The PSL abort
operator truncates a path and moves to the weak view. Thus, the property
always (abort reset) partitions the path into segments at every occurrence
of reset (discarding the states on which reset occurs). The property ¢ must
hold neutrally on the final segment, and weakly on the remaining segments (each
of which was followed in the original path by a state on which reset held).

The point of the abort operator can be best appreciated by comparing it to
the until operator. Both of the following properties:

(always (p — > eventually! q)) abort reset (1)

(p — > eventually! q) until reset (2)

need (p -> eventually! q) to hold up until reset holds. However, they differ
with respect to what happens at that point. Consider a path 7 of length 20 such
that p holds at states 2 and 10, q holds at state 4, and reset holds at state 15.
Property 1 holds on such a path, because the abort operator truncates the path
at the occurrence of reset and takes us to the weak view. Since the sub-property
(always (p -> eventually! q)) holds weakly on the truncated path, Property 1
holds on the original path. However, Property 2 does not hold on path 7, because
sub-property (p -> eventually! q) does not hold at state 10.

The behavior of the abort operator is very easy to describe in an informal
manner, but very difficult to formalize. Our first try, the abort semantics [14],
defined simply

w = ¢ abort b <=
either w = ¢ or
there exist j < |w| and word w’ such that w’ = band w7~ 1w’ |= ¢

This looks intuitive, but turns out not to be what we wanted. Consider the prop-
erty (eventually! false) abort b on a path where b occurs at some point.
We want the property to hold on such a path, because we want eventually!
false to hold in the weak view on a finite path. To see this, recall that
eventually! false is equivalent to true until! false. If we weaken the
until! operator we get true until false which holds on any path. However,
looking back to the proposed semantics, there is no w’ we can choose that will
give us what we want. Others [3] were more successful, but ended up with a
semantics that required intricate manipulations of two contexts within the se-
mantics of the existing LTL operators.

We have since presented two simple and elegant formulations. The original
truncated semantics, presented in [14], directly defines semantics for each of
the three views (weak, neutral and strong). The result is a semantics that is

6 C. Eisner

equivalent to the reset semantics of [3], but whose presentation is much cleaner
and easier to grasp. The T, L approach to the truncated semantics, presented
in [15], takes another tack, and folds the three views into an equivalent but more
compact representation. It does so by adding two new letters, T and L, to the
alphabet, such that everything holds on T, including false, and nothing holds
on L, including true. With these two new letters, the original formulation of the
semantics presented above works because we can choose a w’ consisting entirely
of the letter T. While the T, | approach uses a slightly more cryptic formulation
than the original truncated semantics, we have found it useful in characterizing
the relation between the weak and strong views, as described in [13].

4 The FoCs Approach to the Ticking of Time

PSL does not dictate how time ticks. The formal semantics (see for instance
Appendix B of [12]) is based on a sequence of states, but how those states are
derived from the hardware or software under verification is not defined. This is
good news for software, because it means that the formal semantics can be used
as is. However, it does not provide any practical answers.

FoCs is a tool that takes PSL properties and translates them into monitors
that allow the use of PSL in event-based software. Originally, FoCs was designed
for hardware simulations [1], but it can work with other event-based software as
well. In the FoCs approach, the responsibility for time belongs to the applica-
tion. If the user has embedded a PSL property in C (or other) code, FoCs will
translate the property into a state machine embedded in the code at the loca-
tion where the property originally appeared. Then, time is considered to have
ticked when the state machine is reached at runtime. The FoCs approach is a
generic solution for any language, but of course it is not a general solution for
any application, in the case that some other definition of the ticking of time is
desired.

Acknowledgements

PSL was and continues to be the work of many people. I would particularly like
to acknowledge my IBM colleagues Ilan Beer, Shoham Ben-David, Dana Fisman
and Avner Landver for their early work on Sugar, and Dana Fisman, Avigail
Orni, Dmitry Pidan and Sitvanit Ruah for more recent work on PSL.

The members of the Accellera FVTC (Formal Verification Technical Commit-
tee) and the IEEE P1850 PSL Working Group are too numerous to mention by
name — a complete list can be found in the respective standards [2] [16] — but
I would particularly like to thank Harry Foster and Erich Marschner, chairman
and co-chairman of the FVTC and chairman and secretary of the IEEE P1850
Working Group, for leading the process that led to standardization.

PSL for Runtime Verification: Theory and Practice 7

The work described in Section 3 was joint work with Dana Fisman, John

Havlicek, Yoad Lustig, Anthony Mclsaac, Johan Martensson and David Van
Campenhout (in various combinations).

Thank you to Dmitry Pidan for his explanation of the FoCs approach to the

ticking of time.

References

(%3]

10.

11.

12.

13.

14.

15.

16.

. Abarbanel, Y., Beer, 1., Gluhovsky, L., Keidar, S., Wolfsthal, Y.: FoCs - automatic

generation of simulation checkers from formal specifications. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer, Heidelberg (2000)
Accellera property specification language reference manual,
http://www.eda.org/vfv/docs/psl_lrm-1.1.pdf

Armoni, R., Bustan, D., Kupferman, O., Vardi, M.Y.: Aborts vs resets in linear
temporal logic. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003.
LNCS, vol. 2619, Springer, Heidelberg (2003)

Barner, S., Glazberg, Z., Rabinovitz, I.: Wolf - bug hunter for concurrent software
using formal methods. In: CAV, pp. 153-157 (2005)

Ben-David, S., Fisman, D., Ruah, S.: The safety simple subset. In: Ur, S., Bin,
E., Wolfsthal, Y. (eds.) First International Haifa Verification Conference. LNCS,
vol. 3875, pp. 14-29. Springer, Heidelberg (2005)

. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without

BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579,
Springer, Heidelberg (1999)

. Cheung, P.H., Forin, A.: A C-language binding for PSL. In: Technical Report MSR-

TR-2006-131, Microsoft Research (2006)

. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using

branching time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS,
vol. 131, pp. 52-71. Springer, Heidelberg (1982)

. Dahan, A., Geist, D., Gluhovsky, L., Pidan, D., Shapir, G., Wolfsthal, Y., Be-

nalycherif, L., Kamdem, R., Lahbib, Y.: Combining system level modeling with
assertion based verification. In: ISQED, pp. 310-315 (2005)

Eisner, C.: Model checking the garbage collection mechanism of SMV. In: Stoller,
S.D., Visser, W. (eds.) Electronic Notes in Theoretical Computer Science, vol. 55,
Elsevier, Amsterdam (2001)

Eisner, C.: Formal verification of software source code through semi-automatic
modeling. Software and Systems Modeling 4(1), 14-31 (2005)

Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg
(2006)

Eisner, C., Fisman, D., Havlicek, J.: A topological characterization of weakness.
In: Proc. 24th Annual ACM Symposium on Principles of Distributed Com puting
(PODC), pp. 1-8 (2005)

Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27-39. Springer, Heidelberg (2003)
Eisner, C., Fisman, D., Havlicek, J., Martensson, J.: The T, L approach for trun-
cated semantics. Technical Report 2006.01, Accellera (January 2006)

IEEE standard for property specification language (PSL). IEEE Std 1850-2005

